Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 1009-1018.doi: 10.19799/j.cnki.2095-4239.2023.0754
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jia LIU1(), Zhiqiang MA1,3(), Guangchen LIU2,3, Jundong GAO1, Hongxun LI1
Received:
2023-10-30
Revised:
2023-11-08
Online:
2024-03-28
Published:
2024-03-28
Contact:
Zhiqiang MA
E-mail:liu_jia0429@126.com;mzq_bim@imut.edu.cn
CLC Number:
Jia LIU, Zhiqiang MA, Guangchen LIU, Jundong GAO, Hongxun LI. Predicting the residual useful life of power batteries based on the GRUU-TCN ensemble under multiscale decomposition[J]. Energy Storage Science and Technology, 2024, 13(3): 1009-1018.
Table 1
Compare experimental evaluation indexes"
电池 | 预测起点 | 方法 | RUL预测值 | AE | MAE | RMSE |
---|---|---|---|---|---|---|
B0005 | 80 | GRU | 35 | 10 | 0.0110 | 0.0135 |
LSTM | 36 | 9 | 0.0096 | 0.0124 | ||
TCN | 42 | 3 | 0. 0082 | 0.0142 | ||
EEMD-GRU-ARIMA | 35 | 10 | 0.0068 | 0.0092 | ||
EEMD-GRU-MLR | 34 | 11 | 0.0067 | 0.0073 | ||
EEMD-GRU-GRU | 35 | 10 | 0.0075 | 0.0082 | ||
EEMD-GRU-TCN | 36 | 9 | 0.0054 | 0.0070 | ||
EEMD-GRU-TCN-Stacking | 38 | 7 | 0.0057 | 0.0077 | ||
Ours | 44 | 1 | 0.0052 | 0.0074 | ||
B0006 | 80 | GRU | 29 | 1 | 0.0116 | 0.0127 |
LSTM | 30 | 0 | 0.0111 | 0.0114 | ||
TCN | 29 | 1 | 0.0128 | 0.0222 | ||
EEMD-GRU-ARIMA | 27 | 3 | 0.0067 | 0.0091 | ||
EEMD-GRU-MLR | 17 | 13 | 0.0079 | 0.0149 | ||
EEMD-GRU-GRU | 26 | 4 | 0.0086 | 0.0116 | ||
EEMD-GRU-TCN | 30 | 0 | 0.0053 | 0.0066 | ||
EEMD-GRU-TCN-Stacking | 16 | 14 | 0.0113 | 0.0178 | ||
Ours | 30 | 0 | 0.0047 | 0.0050 | ||
B0007 | 80 | GRU | 68 | 12 | 0.0112 | 0.0117 |
LSTM | 69 | 11 | 0.0104 | 0.0111 | ||
TCN | 82 | 2 | 0.0105 | 0.0164 | ||
EEMD-GRU-ARIMA | 80 | 0 | 0.0062 | 0.0103 | ||
EEMD-GRU-MLR | 76 | 4 | 0.0068 | 0.0074 | ||
EEMD-GRU-GRU | 75 | 5 | 0.0099 | 0.0120 | ||
EEMD-GRU-TCN | 82 | 2 | 0.0052 | 0.0072 | ||
EEMD-GRU-TCN-Stacking | 65 | 15 | 0.0058 | 0.0076 | ||
Ours | 80 | 0 | 0.0047 | 0.0072 |
Table 2
The experimental results were compared with different starting points"
电池 | 预测起点 | RUL预测值 | AE | MAE | RMSE |
---|---|---|---|---|---|
B0005 | 70 | 51 | 4 | 0.0103 | 0.0110 |
80 | 44 | 1 | 0.0052 | 0.0074 | |
90 | 35 | 0 | 0.0033 | 0.0044 | |
100 | 25 | 0 | 0.0030 | 0.0043 | |
B0006 | 70 | 37 | 3 | 0.0104 | 0.0138 |
80 | 30 | 0 | 0.0047 | 0.0050 | |
90 | 20 | 0 | 0.0043 | 0.0054 | |
100 | 10 | 0 | 0.0039 | 0.0052 | |
B0007 | 70 | 88 | 2 | 0.0112 | 0.0145 |
80 | 80 | 0 | 0.0047 | 0.0072 | |
90 | 70 | 0 | 0.0030 | 0.0036 | |
100 | 60 | 0 | 0.0018 | 0.0026 |
Table 3
Ablation results"
电池 | 预测起点 | 预测方法 | RUL预测值 | AE | MAE | RMSE | ||
---|---|---|---|---|---|---|---|---|
GRU | TCN | Attention | ||||||
B0005 | 80 | √ | — | — | 0.7064 | 0.7076 | ||
√ | 44 | 1 | 0.0061 | 0.0080 | ||||
√ | √ | 44 | 1 | 0.0054 | 0.0077 | |||
√ | √ | — | — | 0.7055 | 0.7067 | |||
√ | √ | 42 | 3 | 0.0067 | 0.0081 | |||
√ | √ | √ | 44 | 1 | 0.0052 | 0.0074 | ||
B0006 | 80 | √ | — | — | 0.6743 | 0.6760 | ||
√ | 31 | 1 | 0.0088 | 0.0127 | ||||
√ | √ | 28 | 2 | 0.0053 | 0.0066 | |||
√ | √ | — | — | 0.6730 | 0.6746 | |||
√ | √ | 38 | 8 | 0.0114 | 0.0148 | |||
√ | √ | √ | 30 | 0 | 0.0047 | 0.0050 | ||
B0007 | 80 | √ | — | — | 0.7542 | 0.7549 | ||
√ | 81 | 1 | 0.0058 | 0.0077 | ||||
√ | √ | 80 | 0 | 0.0052 | 0.0072 | |||
√ | √ | — | — | 0.7552 | 0.7559 | |||
√ | √ | 82 | 2 | 0.0108 | 0.0120 | |||
√ | √ | √ | 80 | 0 | 0.0047 | 0.0072 |
1 | 武明虎, 岳程鹏, 张凡, 等. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228. |
WU M H, YUE C P, ZHANG F, et al. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition[J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228. | |
2 | KHODADADI SADABADI K, JIN X, RIZZONI G. Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health[J]. Journal of Power Sources, 2021, 481: 228861. |
3 | WANG D, KONG J Z, YANG F F, et al. Battery prognostics at different operating conditions[J]. Measurement, 2020, 151: 107182. |
4 | GUHA A, PATRA A, VAISAKH K V. Remaining useful life estimation of lithium-ion batteries based on the internal resistance growth model[C]//2017 Indian Control Conference (ICC). Guwahati, India. IEEE, 2017: 33-38. |
5 | ZHANG H, MIAO Q, ZHANG X, et al. An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288-298. |
6 | 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1533, 25. |
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1533, 25. | |
7 | 廖力, 肖廷奕, 吴铁洲, 等. 基于多健康特征融合的锂电池SOH和RUL预测[J]. 电源技术, 2023, 47(2): 193-198. |
LIAO L, XIAO T Y, WU T Z, et al. SOH and RUL prediction for lithium batteries based on fusion of multiple health features[J]. Chinese Journal of Power Sources, 2023, 47(2): 193-198. | |
8 | 吴忠强, 胡晓宇, 马博岩, 等. 基于 PF-LSTM 的锂电池剩余使用寿命预测[J]. 计量学报, 2023, 44(6): 939-947. |
WU Z Q, HU X Y, MA B Y, et al. Residual service life prediction of lithium batteries based on PF-LSTM [J]. Acta Metrologica Sinica, 2023, 44(6): 939-947. | |
9 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 1975, 10: 19621-19628. |
10 | HONG J, LEE D, JEONG E R, et al. Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning[J]. Applied Energy, 2020, 278: 115646. |
11 | 董渊昌, 庞晓琼, 贾建芳, 等. 基于SVD-SAE-GPR的锂离子电池RUL预测[J]. 储能科学与技术, 2023, 12(4): 1257-1267. |
DONG Y C, PANG X Q, JIA J F, et al. Remaining useful life prediction of lithium-ion batteries based on SVD-SAE-GPR[J]. Energy Storage Science and Technology, 2023, 12(4): 1257-1267. | |
12 | LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3170-3180. |
13 | MAO L, XU J, CHEN J J, et al. A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD[J]. Energies, 2020, 13(9): 2380. |
14 | WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. |
15 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:, 2018. |
16 | CHO K, MERRIENBOER B V, GÜLÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:, 2014. |
17 | FUKUSHIMA K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36(4): 193-202. |
18 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. |
19 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:, 2014. |
20 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Repository, 2007. |
[1] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[2] | Minghu WU, Chengpeng YUE, Fan ZHANG, Junxiao LI, Wei HUANG, Sheng HU, Jing TANG. Combined GRU-MLR method for predicting the remaining useful life of lithium batteries via multiscale decomposition [J]. Energy Storage Science and Technology, 2023, 12(7): 2220-2228. |
[3] | Guangjin ZHAO, Bowen LI, Yuxia HU, Ruifeng DONG, Fangfang WANG. Overview of the echelon utilization technology and engineering application of retired power batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. |
[4] | Huiqun YU, Zhehao HU, Daogang PENG, Haoyi SUN. Key technologies for retired power battery recovery and its cascade utilization in energy storage systems [J]. Energy Storage Science and Technology, 2023, 12(5): 1675-1685. |
[5] | Feng LIU, Haizhong CHEN. Lithium-ion battery state prediction based on CEEMDAN and ISOA-ELM [J]. Energy Storage Science and Technology, 2023, 12(4): 1244-1256. |
[6] | Pengkai WANG, Xinyan ZHANG, Guanghao ZHANG. Remaining useful life prediction of lithium-ion batteries based on ResNet-Bi-LSTM-Attention model [J]. Energy Storage Science and Technology, 2023, 12(4): 1215-1222. |
[7] | Yunjie LI, Guangyu ZHANG, Weiwen ZHU, Yuanyuan MIN, Chengfei RAO, Yanfei SUN, Qingqing XU. The dynamic simulation of pressure relief characteristics of the power battery vent based on choking flow [J]. Energy Storage Science and Technology, 2023, 12(3): 960-967. |
[8] | Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network [J]. Energy Storage Science and Technology, 2023, 12(2): 570-578. |
[9] | Zhenbo WEI, Yixin YAO, Wenwen ZHANG, Zihang LUO, Yinjiang LI, Yujie REN. Capacity-based optimal configuration of microgrid hybrid energy-storage system with pumped storage based on CEEMDAN [J]. Energy Storage Science and Technology, 2023, 12(11): 3414-3424. |
[10] | Rui CHEN, Kai DING, Lianxing ZU, Qingsong XU, Zongbiao WANG, Dasi LUO, Jingjiang SU, Sheng HU, Jilong MAO. Prediction of state of health of lithium-ion batteries based on the AED-CEEMD-Transformer network [J]. Energy Storage Science and Technology, 2023, 12(10): 3242-3253. |
[11] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[12] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[13] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[14] | Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model [J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626. |
[15] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||