Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1617-1626.doi: 10.19799/j.cnki.2095-4239.2021.0637
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xiaoyuan ZHANG(), Jinhao ZHANG, Yajun JIANG
Received:
2021-11-30
Revised:
2021-12-15
Online:
2022-05-05
Published:
2022-05-07
Contact:
Xiaoyuan ZHANG
E-mail:freedom@haut.edu.cn
CLC Number:
Xiaoyuan ZHANG, Jinhao ZHANG, Yajun JIANG. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626.
Table 3
Evaluation results of batteries SOH performance"
评价指标 | 电池序号 | Encorder-TCN | TCN | GRU | LSTM |
---|---|---|---|---|---|
MSE/% | CS33 | 0.0167738 | 0.0412891 | 0.1702569 | 0.0437183 |
CS34 | 0.0256044 | 0.0277419 | 0.0290808 | 0.2298263 | |
CS35 | 0.0157313 | 0.0218908 | 0.0389273 | 0.0289350 | |
CS36 | 0.0096664 | 0.0133836 | 0.2969346 | 0.0362662 | |
RMSE/% | CS33 | 1.2951373 | 2.0319711 | 4.1262198 | 2.0908928 |
CS34 | 1.6001361 | 1.6655911 | 1.7053086 | 4.7940201 | |
CS35 | 1.2542454 | 1.4795535 | 1.9729991 | 1.7010299 | |
CS36 | 0.9831776 | 1.1568763 | 5.4491701 | 1.9043677 | |
MAE/% | CS33 | 1.0180461 | 1.7207226 | 2.7546348 | 1.6967513 |
CS34 | 0.9839263 | 1.3964472 | 1.2849554 | 3.2334339 | |
CS35 | 0.9726970 | 1.1667483 | 1.5380482 | 1.3619463 | |
CS36 | 0.7271382 | 0.8386590 | 4.3778951 | 1.3251187 |
1 | 王震坡, 李晓宇, 袁昌贵, 等. 大数据下电动汽车动力电池故障诊断技术挑战与发展趋势[J]. 机械工程学报, 2021, 57(14): 52-63. |
WANG Z P, LI X Y, YUAN C G, et al. Challenge and prospects for fault diagnosis of power battery system for electrical vehicles based on big-data[J]. Journal of Mechanical Engineering, 2021, 57(14): 52-63. | |
2 | 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145-8154, 8251. |
YAN G G, LI H B, DUAN S M, et al. Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145-8154, 8251. | |
3 | 李相俊, 马锐. 考虑电池组健康状态的储能系统能量管理方法[J]. 电网技术, 2020, 44(11): 4210-4217. |
LI X J, MA R. Energy management method of energy storage system considering the SOH of battery pack[J]. Power System Technology, 2020, 44(11): 4210-4217. | |
4 | 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613-623. |
WANG P, ZHANG J, CHENG Z. State of health estimation of Li-ion battery based on least squares support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613-623. | |
5 | 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038-4044. |
WEI H Y, CHEN X J, LÜ Z Q, et al. Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12): 4038-4044. | |
6 | 耿萌萌, 范茂松, 杨凯, 等. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678. |
GENG M M, FAN M S, YANG K, et al. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J]. Energy Storage Science and Technology, 2022, 11(2): 673-678. | |
7 | 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326-2333. |
WANG F, SHI Y S, LIU B Q, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | |
8 | 王琪, 孙玉坤, 倪福银, 等. 混合动力汽车电池内部状态预测的贝叶斯极限学习机方法[J]. 中国机械工程, 2016, 27(22): 3118-3123. |
WANG Q, SUN Y K, NI F Y, et al. Prediction of internal states of battery in HEV by BELM[J]. China Mechanical Engineering, 2016, 27(22): 3118-3123. | |
9 | 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J]. 电工技术学报, 2020, 35(18): 3979-3993. |
JIAO Z Q, FAN X M, ZHANG X, et al. State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3979-3993. | |
10 | DONG H C, JIN X N, LOU Y B, et al. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter[J]. Journal of Power Sources, 2014, 271: 114-123. |
11 | ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. 2014: arXiv: 1409.2329[cs.NE]. https://arxiv.org/abs/1409.2329. |
12 | 张少宇, 伍春晖, 熊文渊. 采用门控循环神经网络估计锂离子电池健康状态[J]. 红外与激光工程, 2021, 50(2): 3788/IRLA20200339. |
ZHANG S Y, WU C H, XIONG W Y. State of health estimation for lithium-ion batteries using recurrent neural networks with gated recurrent unit[J]. Infrared and Laser Engineering, 2021, 50(2): 3788/IRLA20200339. | |
13 | 张岸, 杨春德. 基于GAN-CNN-LSTM的锂电池SOH估计[J]. 电源技术, 2021, 45(7): 902-906. |
ZHANG A, YANG C D. SOH estimation of lithium batteries based on GAN-CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(7): 902-906. | |
14 | 李超然, 肖飞, 樊亚翔, 等. 基于深度学习的锂离子电池SOC和SOH联合估算[J]. 中国电机工程学报, 2021, 41(2): 681-692. |
LI C R, XIAO F, FAN Y X, et al. Joint estimation of the state of charge and the state of health based on deep learning for lithium-ion batteries[J]. Proceedings of the CSEE, 2021, 41(2): 681-692. | |
15 | LI P H, ZHANG Z J, XIONG Q Y, et al. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network[J]. Journal of Power Sources, 2020, 459: 228069. |
16 | QU J T, LIU F, MA Y X, et al. A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery[J]. IEEE Access, 2019, 7: 87178-87191. |
17 | 刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694. |
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694. | |
18 | NAUTA M, BUCUR D, SEIFERT C. Causal discovery with attention-based convolutional neural networks[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 312-340. |
19 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. 2014: arXiv: 1412.3555[cs.NE]. https://arxiv.org/abs/1412.3555 |
20 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
21 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. |
[1] | CHANG Zeyu, ZHANG Zhiqi, ZHANG Xiaodong, LI Li, YU Yajuan. A data-driven state of health (SOH) assessment platform for vehicle power batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853. |
[2] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[3] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | Jian HU, Chunjing LIN, Weijian HAO, Tianlei ZHENG. Current status and suggestions for the construction of power battery standard system [J]. Energy Storage Science and Technology, 2022, 11(1): 313-320. |
[6] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[7] | Feifei LIU, Rongqing BAO, Xianfu CHENG, Jun LI, Wu QIN, Chaofeng YANG. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions [J]. Energy Storage Science and Technology, 2021, 10(6): 2269-2282. |
[8] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[9] | Lei GAO, Yufeng MENG, Qibin YAN, Hui YANG. The influence of copper foil appearance quality on Li-ion power battery performance [J]. Energy Storage Science and Technology, 2020, 9(S1): 1-6. |
[10] | Jian SHEN, Bixiong HUANG, Zhaokang XIE, Jiayin LI, Ningning LIU, Zhiqiang JIA. Internal structure layout and optimization design of FSEC racing power battery box [J]. Energy Storage Science and Technology, 2020, 9(S1): 31-38. |
[11] | Ying HE, Genpeng ZHONG, Yi CHEN. Research on SOC estimation of lithium-ion power battery based on feature combination and stacking fusion ensemble Learning [J]. Energy Storage Science and Technology, 2020, 9(5): 1548-1557. |
[12] | WEI Meng, LI Jiabo, LI Zhongyu, YE Min, XU Xinxin. SOC estimation of Li-ion batteries based on Gaussian process regression and UKF [J]. Energy Storage Science and Technology, 2020, 9(4): 1206-1213. |
[13] | WEI Meng, LI Jiabo, YE Min, GAO Kangping, XU Xinxin. SOC estimation of Li-ion battery based on gaussian mixture regression [J]. Energy Storage Science and Technology, 2020, 9(3): 958-963. |
[14] | FENG Juqiang, SI Yuwen, WU Long, HUANG Kaifeng, ZHANG Xing. Analysis of dynamic battery characteristics based on dynamic synthesis equivalent circuit model [J]. Energy Storage Science and Technology, 2020, 9(3): 986-992. |
[15] | HU Feng, WANG Haimin, CHEN Si. Test and analysis of internal temperature and heat generation characteristics of 811 type power battery [J]. Energy Storage Science and Technology, 2020, 9(3): 993-1000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||