Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1608-1616.doi: 10.19799/j.cnki.2095-4239.2021.0514
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yuanxia DONG1(
), Hengyun ZHANG1(
), Jiajun ZHU1, Xiaobin XU1, Shunliang ZHU1,2
Received:2021-10-08
Revised:2021-10-21
Online:2022-05-05
Published:2022-05-07
Contact:
Hengyun ZHANG
E-mail:1329464216@qq.com;zhanghengyun@sues.edu.cn
CLC Number:
Yuanxia DONG, Hengyun ZHANG, Jiajun ZHU, Xiaobin XU, Shunliang ZHU. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module[J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616.
Table 1
Thermo-physical properties of materials used in simulation"
| 材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 热导率/[W/(m·K)] | 动力黏度/[kg/(m·s)] |
|---|---|---|---|---|
| 电芯 | 2680 | 1100 | λx =1.8,λy =λz =15.3 | — |
| 正极极柱 | 2719 | 871 | 202 | — |
| 负极极柱 | 8978 | 381 | 387.6 | — |
| 汇流排 | 2719 | 871 | 202 | — |
| 气凝胶 | 200 | 500 | 0.016 | — |
| 灌封胶 | 1600 | 1010 | 0.65 | — |
| 导热套筒 | 2791 | 871 | 155 | — |
| 空气 | 1.225 | 1006.43 | 0.0242 | 1.789×10-5 |
| 水 | 996.95 | 4178.5 | 0.6 | 9.02×10-4 |
Table 2
Battery thermal runaway model parameters and initial values"
| 符号 | 参数值 | 单位 | 名称 |
|---|---|---|---|
| HSEI | 2.57×105 | J/kg | SEI膜放热量 |
| Hne | 1.55×105 | J/kg | 负极与电解液反应放热量 |
| Hpe | 3.14×105 | J/kg | 正极与电解液反应放热量 |
| He | 1.55×105 | J/kg | 电解液分解放热量 |
| WSEI | 6.104×102 | kg/m3 | SEI膜材料密度 |
| Wne | 6.104×102 | kg/m3 | 负极与电解液反应材料密度 |
| Wpe | 1.438×103 | kg/m3 | 正极与电解液反应材料密度 |
| We | 4.069×102 | kg/m3 | 电解液分解材料密度 |
| aSEI | 1.667×1015 | s-1 | SEI膜频率因子 |
| ane | 2.5×1013 | s-1 | 负极与电解液反应频率因子 |
| ape | 6.667×1013 | s-1 | 正极与电解液反应频率因子 |
| ae | 5.14×1025 | s-1 | 电解液分解频率因子 |
| ESEI | 1.3508×105 | J/mol | SEI膜活化能 |
| Ene | 1.3508×105 | J/mol | 负极与电解液反应活化能 |
| Epe | 1.396×105 | J/mol | 正极与电解液反应活化能 |
| Ee | 2.74×105 | J/mol | 电解液分解活化能 |
| CSEI,0 | 0.15 | CSEI的初始值 | |
| Cne,0 | 0.75 | Cne的初始值 | |
| Ce,0 | 1 | Ce的初始值 | |
| z0 | 0.033 | z的初始值 | |
| α0 | 0.04 | α的初始值 |
Fig. 3
(a) Evolution process of temperature distribution in case of thermal runaway of battery modules configured without thermal conductivity sleeves; (b) Evolution process of temperature distribution in case of thermal runaway of battery modules configured with thermal conductivity sleeves"
| 1 | 梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209. |
| MEI W X, DUAN Q L, WANG Q S, et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. | |
| 2 | 王震坡, 袁昌贵, 李晓宇. 新能源汽车动力电池安全管理技术挑战与发展趋势分析[J]. 汽车工程, 2020, 42(12): 1606-1620. |
| WANG Z P, YUAN C G, LI X Y. An analysis on challenge and development trend of safety management technologies for traction battery in new energy vehicles[J]. Automotive Engineering, 2020, 42(12): 1606-1620. | |
| 3 | 常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199. |
| CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199. | |
| 4 | 齐创, 邝男男, 张亚军, 等. 高比能锂离子电池模组热扩散行为仿真研究[J]. 高电压技术, 2021, 47(7): 2633-2643. |
| QI C, KUANG N N, ZHANG Y J, et al. Simulation study on the thermal propagation behavior of high energy density lithium-ion battery module[J]. High Voltage Engineering, 2021, 47(7): 2633-2643. | |
| 5 | 陈才星, 牛慧昌, 李钊, 等. 环氧树脂板对锂离子电池热失控扩展的阻隔作用[J]. 储能科学与技术, 2019, 8(3): 532-537. |
| CHEN C X, NIU H C, LI Z, et al. Thermal runaway propagation mitigation of lithium ion battery by epoxy resin board[J]. Energy Storage Science and Technology, 2019, 8(3): 532-537. | |
| 6 | 杨娜, 仝义鑫, 赵立军, 等. 基于相变材料的电池模组热失控传播过程研究[J]. 汽车工程, 2021, 43(8): 1161-1167. |
| YANG N, TONG Y X, ZHAO L J, et al. Study on thermal runaway propagation process of battery module based on phase change materials[J]. Automotive Engineering, 2021, 43(8): 1161-1167. | |
| 7 | WENG J W, OUYANG D X, YANG X Q, et al. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material[J]. Energy Conversion and Management, 2019, 200: 112071. |
| 8 | AL-ZAREER M, DINCER I, ROSEN M A. A review of novel thermal management systems for batteries[J]. International Journal of Energy Research, 2018, 42(10): 3182-3205. |
| 9 | COLEMAN B, OSTANEK J, HEINZEL J. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions[J]. Applied Energy, 2016, 180: 14-26. |
| 10 | ZHONG G B, LI H, WANG C, et al. Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules[J]. Journal of the Electrochemical Society, 2018, 165(9): A1925-A1934. |
| 11 | XU J, LAN C J, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890. |
| 12 | 陈天雨. 大容量锂离子电池热失控蔓延建模与仿真研究[D]. 北京: 清华大学, 2019. |
| CHEN T Y. A study on the modeling and simulation of thermal runaway propagation of large-format lithium-ion batteries[D]. Beijing: Tsinghua University, 2019. | |
| 13 | YANG X L, DUAN Y K, FENG X N, et al. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together[J]. Fire Technology, 2020, 56(6): 2579-2602. |
| 14 | MOHAMMED A H, ESMAEELI R, ALINIAGERDROUDBARI H, et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019, 160: 114106. |
| 15 | KSHETRIMAYUM K S, YOON Y G, GYE H R, et al. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system[J]. Applied Thermal Engineering, 2019, 159: 113797. |
| 16 | PATIL M S, SEO J H, PANCHAL S, et al. Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold-plate for lithium-ion pouch cell[J]. International Journal of Energy Research, 2021, 45(2): 2533-2559. |
| 17 | LIU T, HU J, TAO C F, et al. Effect of parallel connection on 18650-type lithium ion battery thermal runaway propagation and active cooling prevention with water mist[J]. Applied Thermal Engineering, 2021, 184: 116291. |
| 18 | AN Z, SHAH K, JIA L, et al. Modeling and analysis of thermal runaway in Li-ion cell[J]. Applied Thermal Engineering, 2019, 160: 113960. |
| 19 | LAI X, WANG S Y, WANG H B, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121080. |
| 20 | WANG C J, ZHU Y L, FAN X K, et al. Mathematical model for thermal behavior of lithium-ion battery pack under overheating[J]. Applied Thermal Engineering, 2021, 191: 116894. |
| 21 | HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755. |
| 22 | PENG P, JIANG F M. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1008-1016. |
| 23 | YE M, XU Y N, HUANGFU Y F. The structure optimization of lithium-ion battery pack based on fluid-solid conjugate thermodynamic analysis[J]. Energy Procedia, 2018, 152: 643-648. |
| 24 | LI Q B, YANG C B, SANTHANAGOPALAN S, et al. Numerical investigation of thermal runaway mitigation through a passive thermal management system[J]. Journal of Power Sources, 2019, 429: 80-88. |
| [1] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
| [2] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
| [3] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
| [4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
| [5] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
| [6] | Jun WANG, Zhuangzhuang JIA, Peng QIN, Zheng HUANG, Jingyun WU, Wen QI, Qingsong WANG. Simulation of thermal runaway gas diffusion in LiFePO4 battery module [J]. Energy Storage Science and Technology, 2022, 11(1): 185-192. |
| [7] | Zhihui GUO, Xiaodan CUI, Linshuang ZHAO, Jiawei CHEN. Fire and gas explosion hazards of high-nickel lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 193-200. |
| [8] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
| [9] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
| [10] | Xiuliang CHANG, Lili ZHENG, Shouli WEI, Tao ZHANG, Bing CHEN, Zhuo XU, Zuoqiang DAI. Progress in thermal runaway simulation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199. |
| [11] | Jinlong XU, Jiani SHEN, Qiankun WANG, Yijun HE, Zifeng MA, Wen TAN, Qingheng YANG. Analysis of electrothermal coupling abuse condition based on thermal runaway model of lithium-ion battery [J]. Energy Storage Science and Technology, 2021, 10(4): 1344-1352. |
| [12] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
| [13] | Zhihong ZHANG, Junyan MOU, Yufa MENG. Thermal runaway propagation characteristics of an air-cooled cylindrical lithium-ion battery system [J]. Energy Storage Science and Technology, 2021, 10(2): 658-663. |
| [14] | Tiannian ZHOU, Chuanping WU, Baohui CHEN. Burning characteristics of the 18650-type lithium-ion ternary battery pack induced by heating [J]. Energy Storage Science and Technology, 2021, 10(2): 558-564. |
| [15] | Li WANG, Leqiong XIE, Guangyu TIAN, Xiangming HE. Safety accidents of Li-ion batteries: Reliability issues or safety issues [J]. Energy Storage Science and Technology, 2021, 10(1): 1-6. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||