Energy Storage Science and Technology
Xinxin ZHANG1, Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2
Received:
2025-02-22
Revised:
2025-02-22
Online:
2025-02-26
CLC Number:
Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2024 to Jan. 31, 2025)[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0155.
1 | BERGSCHNEIDER M, KONG F, CONLIN P, et al. Mechanical degradation by anion redox in LiNiO2 countered via pillaring[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403837. |
2 | NUNES B N, KARGER L, ZHANG R, et al. Enhanced cycling performance of the LiNiO2 cathode in Li-ion batteries enabled by nb-based surface coating[J]. Chemsuschem, 2024, doi: 10.1002/cssc.202402202. |
3 | LIAO H, CAI M, MA W, et al. Carbonated beverage chemistry for high-voltage battery cathodes[J]. Advanced Materials, 2024, doi 10.1002/adma.202402739. |
4 | AN L, SWALLOW J E N, CONG P, et al. Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes[J]. Energy & Environmental Science, 2024, 17(21): 8379-8391. |
5 | CAI X, YAN P, XIE T, et al. Pinning the surface layered oxide structure in high temperature calcination using conformal atomic layer deposition coating for fast charging cathode[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202423888. |
6 | ZHANG Y, YAO N, TANG X, et al. Upcycling of high-rate Ni-rich cathodes through intrinsic structural features[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402918. |
7 | LIN L, ZHANG L, FU Z, et al. Unraveling mechanism for microstructure engineering toward high-capacity nickel-rich cathode materials[J]. Advanced Materials, 2024, doi: 10.1002/adma.202406175. |
8 | WANG H, DONG J, WANG M, et al. Synergistic surface restructuring and cation mixing via ultrafast joule heating enhancing ultrahigh-nickel cathodes for advanced lithium-ion batteries[J]. Journal of Energy Chemistry, 2025, 103: 371-382. |
9 | WANG S, LIANG K, ZHAO H, et al. Electronic structure formed by Y2O3-doping in lithium position assists improvement of charging-voltage for high-nickel cathodes[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-52768-7. |
10 | JIN W, KIM Y, JANG H, et al. Identifying the nanostructure of residual Li in high-Ni cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2024, doi: 10.1039/d4ta07384c. |
11 | CHOI S, FENG W, LIU Z, et al. A novel morphology of high voltage LiMn1.5Ni0.5O4 cathode material with niobium-doping[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.153447. |
12 | WANG W, LI X, CHEN X, et al. Aqueous binder with self-emulsifying characteristics for practical Si/C anode in lithium-ion batteries[J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2025, doi: 10.1002/chem.202403924: e202403924-e202403924. |
13 | JEONG H-T and KIM W J. Deformation mechanism maps of pure lithium: Their application in determining stack pressure for all-solid-state lithium-ion batteries[J]. Acs Energy Letters, 2024, 9(7): 3237-3251. |
14 | CHEN H, ZHAO Y, ZHANG X, et al. Synthesis of monocrystalline lithium for high-critical-current-density solid-state batteries[J]. Nature Synthesis, 2025, doi: 10.1038/s44160-024-00712-4. |
15 | BECKER J, FUCHS T, ORTMANN T, et al. Microstructure of lithium metal electrodeposited at the steel|Li6PS5Cl interface in "anode-free" solid-state batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404975. |
16 | MA S, ZHAO J, XIAO H, et al. Modulating the inner helmholtz plane towards stable solid electrolyte interphase by anion-π interactions for high-performance anode-free lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202412955. |
17 | WANG X, LI S, WU F, et al. Hubbard gap closure-induced dual-redox Li-storage mechanism as the origin of anomalously high capacity and fast ion diffusivity in MOFs-like polyoxometalates[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416735. |
18 | JAGER B M, KORTEKAAS L, TEN ELSHOF J E, et al. Mixed-phase enabled high-rate copper niobate anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2025, doi: 10.1039/d4ta07548j. |
19 | KIM S, LEE M J, KWON S H, et al. Designing isocyanate-containing elastomeric electrolytes for antioxidative interphases in 4.7 V solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403846. |
20 | HUANG J, SHEN Z, LI J, et al. Molecular-level designed gel polymer electrolyte with ultrahigh lithium transference number for high-performance lithium metal batteries[J]. Chemical Engineering Journal, 2025, 504. |
21 | FENG G, MA Q, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1016/j.cej.2024.158671. |
22 | NAKAMURA K, SUZUKI K, UTSUNO F, et al. Operando Li-ion distribution measurement of all-solid-state batteries by compton-scattered X rays[J]. Applied Physics Letters, 2024, doi: 10.1063/5.0238369. |
23 | ZHAO P-C, WANG Y, HUANG Q-S, et al. Metal-organic coordination enhanced metallopolymer electrolytes for wide-temperature solid-state lithium metal batteries[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416897. |
24 | LV Q, LI C, LIU Y, et al. In-situ polymerized high-voltage solid-state lithium metal batteries with dual-reinforced stable interfaces[J]. Acs Nano, 2024, 18(34): 23253-23264. |
25 | WEI Y, WANG H, LIN X, et al. Moderate solvation structures of lithium ions for high-voltage lithium metal batteries at-40 °C[J]. Energy & Environmental Science, 2025, 18(2): 786-798. |
26 | HOU J, SUN W, YUAN Q, et al. Multiscale engineered bionic solid-state electrolytes breaking the stiffness-damping trade-off[J]. Angewandte Chemie (International ed. in English), 2025, doi: 10.1002/anie.202421427: e202421427-e202421427. |
27 | WANG X, ZHAO Z, LIU X, et al. Bridging links between solid electrolytes and electrodes: Boosting the electrochemical performance of flame-retardant solid electrolytes with vapor-deposited carbon and gold-sputtered nanolayers[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.157741. |
28 | FENG J, WANG J, GU Q, et al. 1 μm-thick robust gel polymer electrolyte with excellent interfacial stability for high-performance Li metal batteries[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202412287. |
29 | LI W, LI M, WANG S, et al. Superionic conducting vacancy-rich β-Li3N electrolyte for stable cycling of all-solid-state lithium metal batteries[J]. Nature Nanotechnology, 2024, doi: 10.1038/s41565-024-01813-z. |
30 | HONG B, GAO L, LI C, et al. All-solid-state batteries designed for operation under extreme cold conditions[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-55154-5. |
31 | LIU Y, SU H, ZHONG Y, et al. Inhibiting dendrites by uniformizing microstructure of superionic lithium argyrodites for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400783. |
32 | YUAN H, LIN W, TIAN C, et al. In-situ coating strategy to synthesize ultra-soft sulfide solid-state electrolytes for dendrite-free lithium metal batteries[J]. Nano Energy, 2024, doi: 10.1016/j.nanoen.2024.109835. |
33 | LIU M, HONG J J, SEBTI E, et al. Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air[J]. Nature Communications, 2025, doi: 10.1038/s41467-024-55634-8. |
34 | POUDEL T P, TRUONG E, OYEKUNLE I P, et al. Sliceable, moldable, and highly conductive electrolytes for all-solid-state batteries[J]. Acs Energy Letters, 2024, 10(1): 40-47. |
35 | SHEN L, LI J-L, KONG W-J, et al. Anion-engineering toward high-voltage-stable halide superionic conductors for all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202408571. |
36 | ZHANG B, ZHOU Y, YU X, et al. Enhancing Li-ion diffusivity of Li1.3Al0.3Ti1.7(PO4)3 through liquid-electrolytes-induced secondary crystallization[J]. Energy Storage Materials, 2024, doi: 10.1016/j.ensm.2024.103748. |
37 | NAM S, SEONG H, KIM Y, et al. All fluorine-free lithium-ion batteries with high-rate capability[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.154790. |
38 | WANG L, YU F-D, QUE L-F, et al. 12-Ah-level Li-ion pouch cells enabling fast charging at temperatures between-20 and 50 °C[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202408422. |
39 | FORERO-SABOYA J, MOISEEV I A, VLARA M-L, et al. A hydridoaluminate additive producing a protective coating on Ni-rich cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402051. |
40 | XIA D, TAO L, HOU D, et al. A green, fire-retarding ether solvent for sustainable high-voltage Li-ion batteries at standard salt concentration[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400773. |
41 | CUI Z, LIU C and MANTHIRAM A. Enabling stable operation of lithium-ion batteries under fast-operating conditions by tuning the electrolyte chemistry[J]. Advanced Materials, 2024, doi: 10.1002/adma.202409272. |
42 | KIM S, PARK S, KIM M, et al. Improving fast-charging performance of lithium-ion batteries through electrode-electrolyte interfacial engineering[J]. Advanced Science, 2024, doi: 10.1002/advs.202411466. |
43 | LI Y, WEN B, LI N, et al. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries[J]. Angewandte Chemie-International Edition, 2025, doi: 10.1002/anie.202414636. |
44 | KHOTIMAH C, YUWONO R A, WANG F-M, et al. Investigation of space group effects of high-voltage spinel LiNi0.5Mn1.5O4: Unveiling the influences of fluorinate benzimidazole salt additive[J]. Chemical Engineering Journal, 2024, doi: 10.1016/j.cej.2024.152988. |
45 | CHENG J, HUANG Z, LU A, et al. Synergistic functional additives on cycling performance of silicon-carbon composite anode in pouch cells[J]. Journal of Materiomics, 2025, doi: 10.1016/j.jmat.2024.100941. |
46 | HOU J, SHI Q, FENG X, et al. Temperature-inert interface enables safe and practical energy-dense LiNi0.91Co0.07Mn0.02O2 pouch cells[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202402638. |
47 | WANG Y, LIU J, JI H, et al. Optimizing Si-O conjugation to enhance interfacial kinetics for low-temperature rechargeable lithium-ion batteries[J]. Advanced Materials, 2024, doi: 10.1002/adma.202412155. |
48 | HOU W-H, OU Y, ZENG T, et al. Rational molecular design of electrolyte additive endows stable cycling performance of cobalt-free 5 V-class lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(21): 8325-8336. |
49 | LI M, LI S, YAN D, et al. Electrolyte design weakens lithium-ion solvation for a fast-charging and long-cycling Si anode[J]. Chemical Science, 2025, doi: 10.1039/d4sc08125k. |
50 | DAI Z, SUN X, CHEN R, et al. Chemical competing diffusion for practical all-solid-state batteries[J]. Journal of the American Chemical Society, 2024, doi: 10.1021/jacs.4c11645. |
51 | GAO C, XU X, BAI T, et al. Deciphering the interfacial Li-ion migration kinetics of Ni-rich cathodes in sulfide-based all-solid-state batteries[J]. ACS applied materials & interfaces, 2024, doi: 10.1021/acsami.4c17233. |
52 | JANGID M K, CHO T H, MA T, et al. Eliminating chemo-mechanical degradation of lithium solid-state battery cathodes during > 4.5 V cycling using amorphous Nb2O5 coatings[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54331-w. |
53 | HONG S-B, JANG Y-R, KIM H, et al. Wet-processable binder in composite cathode for high energy density all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202400802. |
54 | SHIN H-J, KIM J-T, HAN D, et al. 2D graphene-like carbon coated solid electrolyte for reducing inhomogeneous reactions of all-solid-state batteries[J]. Advanced Energy Materials, 2025, doi: 10.1002/aenm.202403247. |
55 | CHEN J, HU C, LIU R, et al. Long cycle life all-solid-state batteries enabled by medium nanosized catholytes[J]. Journal of Physical Chemistry Letters, 2025, doi: 10.1021/acs.jpclett.4c03539. |
56 | LIU Z, LIU J, ZHAO S, et al. Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries[J]. Nature Sustainability, 2024, doi: 10.1038/s41893-024-01431-6. |
57 | ZHOU X, JIANG M, DUAN Y, et al. Multi-electron transfer halide cathode materials based on intercalation-conversion reaction towards all-solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202416635. |
58 | LEE W, LEE J, YU T, et al. Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-50075-9. |
59 | WU Z, DU L, YANG T, et al. Lithium difluorophosphate additive engineering enabling stable cathodic interface for high-performance sulfide-based all-solid-state lithium battery[J]. Energy & Environmental Materials, 2025, doi: 10.1002/eem2.12871. |
60 | LI L, HU Y, LIU J, et al. Gradual release fluorine from additive to construct a stable LiF-rich cathode electrolyte interphase for high-voltage all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2025, doi: 10.1016/j.cej.2024.158439. |
61 | KONG Z-X, XIONG Z, WU J-F, et al. Suppressing ionic-to-electronic conduction transition on cathode interface enables 4.4 V poly(ethylene oxide)-based all-solid-state batteries[J]. Acs Energy Letters, 2024, 10(1): 287-295. |
62 | HU Z, GENG C, SHI J, et al. In situ welding ionic conductive breakpoints for highly reversible all-solid-state lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2024, 146(49): 34023-34032. |
63 | CAO Z, YAO X, PARK S, et al. Enhancing cathode composites with conductive alignment synergy for solid-state batteries[J]. Science Advances, 2025, doi: 10.1126/sciadv.adr4292. |
64 | KAELI E, JIANG Z, YANG X, et al. Decoupling first-cycle capacity loss mechanisms in sulfide solid-state batteries[J]. Energy & Environmental Science, 2024, doi: 10.1039/d4ee04908j. |
65 | ZHAI P, AHMAD N, QU S, et al. A lithiophilic-lithiophobic gradient solid electrolyte interface toward a highly stable solid-state polymer lithium metal batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202316561. |
66 | ZHANG W, WANG Z, WAN H, et al. Revitalizing interphase in all-solid-state Li metal batteries by electrophile reduction[J]. Nature materials, 2025, doi: 10.1038/s41563-024-02064-y. |
67 | OH J, KWON D, CHOI S H, et al. All-solid-state batteries with extremely low N/P ratio operating at low stack pressure[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404817. |
68 | WANG Y, RAJ V, NAIK K G, et al. Control of two solid electrolyte interphases at the negative electrode of an anode-free all solid-state battery based on argyrodite electrolyte[J]. Advanced Materials, 2025, doi: 10.1002/adma.202410948. |
69 | CAI J, ZHANG X, GOU H, et al. Interface engineering of aluminum foil anode for solid-state lithium-ion batteries under extreme conditions[J]. Acs Energy Letters, 2024, 10(1): 439-449. |
70 | CHEN Y, GAO X, ZHEN Z, et al. The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(23): 9288-9302. |
71 | WANG D, GWALANI B, WIERZBICKI D, et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries[J]. Nature Materials, 2025, doi: 10.1038/s41563-024-02057-x. |
72 | SONG H, MUENCH K, LIU X, et al. All-solid-state Li-S batteries with fast solid-solid sulfur reaction[J]. Nature, 2025, doi: 10.1038/s41586-024-08298-9. |
73 | WOOLLEY H M, LANGE M, NAZMUTDINOVA E, et al. Toward high-capacity Li-S solid-state batteries: The role of partial ionic transport in the catholyte[J]. Acs Energy Letters, 2024, 9(7): 3547-3556. |
74 | LUO Z-H, ZHENG M, ZHOU M-X, et al. 2D nanochannel interlayer realizing high-performance lithium-sulfur batteries[J]. Advanced materials (Deerfield Beach, Fla.), 2025, doi: 10.1002/adma.202417321: e2417321-e2417321. |
75 | HE Y, XIONG D, LUO Y, et al. Phase reconstruction-assisted electron-Li+ reservoirs enable high-performance Li-S battery operation across wide temperature range[J]. Advanced Functional Materials, 2025, doi: 10.1002/adfm.202410899. |
76 | ZHANG Z, XIAO X, YAN A, et al. Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54366-z. |
77 | SONG I T, KANG J, KOH J, et al. Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-52766-9. |
78 | HONG L, ZHANG Y, MEI P, et al. Temperature-responsive formation cycling enabling LiF-rich cathode-electrolyte interphase[J]. Angewandte Chemie-International Edition, 2024, doi: 10.1002/anie.202409069. |
79 | FUCHS T, ORTMANN T, BECKER J, et al. Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction[J]. Nature materials, 2024, doi: 10.1038/s41563-024-02006-8. |
80 | WASYLOWSKI D, DITLER H, SONNET M, et al. Operando visualisation of lithium plating by ultrasound imaging of battery cells[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54319-6. |
81 | VACIK J, CECCIO G and TOMANDL I. Neutron depth profiling - a method for direct visualization of Li-ion distribution and migration in all-solid-state Li-ion batteries [J]. Radiation Effects and Defects in Solids, 2024, 179(11-12): 1564-1568. |
82 | YUN H, LEE E, HAN J, et al. Voltage noise failure induced by Li dendritic micro-penetration in all-solid-state Li-metal battery with composite solid electrolyte[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202404044. |
83 | CHEN B, XU K, TANG L, et al. In operando visualization of polymerized ionic liquid electrolyte migration in solid-state lithium batteries[J]. Acs Energy Letters, 2024, 10(1): 305-312. |
84 | MAITY A, SVIRINOVSKY-ARBELI A, BUGANIM Y, et al. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54315-w. |
85 | YU Z, GAN C, MIJAILOVIC A S, et al. Lithium dendrite deflection at mixed ionic-electronic conducting interlayers in solid electrolytes[J]. Advanced Energy Materials, 2024, doi: 10.1002/aenm.202403179. |
86 | ZHANG X, MAO S, HAN X, et al. Online lithium plating detection based on charging internal resistance for lithium-ion batteries[J]. Journal of Energy Storage, 2025, doi: 10.1016/j.est.2024.115140. |
87 | HAN X, XU R, LI Y, et al. Early-stage latent thermal failure of single-crystal Ni-rich layered cathode[J]. Journal of Energy Chemistry, 2024, 96: 578-587. |
88 | BAI X, ZHENG C, ZHANG H, et al. How do high-voltage cathode and PEO electrolyte get along well? Eis analysis mechanism & potentiometric control strategy[J]. Journal of Energy Chemistry, 2024, 96: 424-436. |
89 | YANAGIHARA S, HUEBNER J, HUANG Z, et al. Compatibility of halide electrolytes in solid-state Li-S battery cathodes[J]. Chemistry of Materials, 2024, doi: 10.1021/acs.chemmater.4c02159. |
90 | PULS S, NAZMUTDINOVA E, KALYK F, et al. Benchmarking the reproducibility of all-solid-state battery cell performance[J]. Nature Energy, 2024, 9(10): 1310-1320. |
91 | CHEN C, LIU B, MITTONE A, et al. Probing microstructure evolution of Si/C anode for Li-ion batteries via synchrotron transmission X-ray tomographic microscopy[J]. Journal of Power Sources, 2024, doi: 10.1016/j.jpowsour.2024.235378. |
92 | SEO J-Y, KIM S, KIM J-H, et al. Mechanical shutdown of battery separators: Silicon anode failure[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54313-y. |
93 | HUO H, BAI Y, BENZ S L, et al. Decoupling the effects of interface chemical degradation and mechanical cracking in solid-state batteries with silicon electrode[J]. Advanced materials (Deerfield Beach, Fla.), 2024, doi: 10.1002/adma.202415006: e2415006-e2415006. |
94 | LI M, XUE D, RONG Z, et al. Stack pressure enhanced size threshold of Si anode fracture in all-solid-state batteries[J]. Advanced Functional Materials, 2024, doi: 10.1002/adfm.202415696. |
95 | LEAU C, WANG Y, GERVILLIE-MOURAVIEFF C, et al. Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression[J]. Nature Communications, 2025, 16(1): 757-757. |
96 | GROHER C, CUPID D M, JIANG Q, et al. Investigating the multifunctional role of tris(trimethylsilyl)phosphite as an electrolyte additive via operando gas chromatography/mass spectrometry and X-ray photoelectron spectroscopy[J]. Advanced Energy and Sustainability Research, 2025, doi: 10.1002/aesr.202400297. |
97 | MAILOA J P, LI X and ZHANG S. 3T-VASP: fast ab-initio electrochemical reactor via multi-scale gradient energy minimization[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-54453-1. |
98 | ZHU S, RAMSUNDAR B, ANNEVELINK E, et al. Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning[J]. Nature Communications, 2024, doi: 10.1038/s41467-024-51653-7. |
99 | LEE J and HAN Y-K. Unveiling the mechanism of dense cathode-electrolyte interphase formation in lithium-ion batteries using cyclophosphamide additive[J]. Electrochimica Acta, 2025, doi: 10.1016/j.electacta.2024.145628. |
100 | CHEN J, FANG M, WU Q, et al. Insights into the atomic mechanism of lithium-ion diffusion in Li6PS5Cl via a machine learning potential[J]. Chemistry of Materials, 2025, doi: 10.1021/acs.chemmater.4c01152. |
[1] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[2] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
[3] | Hong ZHOU, Hailong YU, Liping WANG, Xuejie HUANG. Frontier monitoring and topic analysis of lithium batteries based on BERTopic model [J]. Energy Storage Science and Technology, 2025, 14(1): 406-416. |
[4] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[5] | Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024) [J]. Energy Storage Science and Technology, 2025, 14(1): 388-405. |
[6] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[7] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[8] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[9] | Jieyu ZHANG, Shun ZHANG, Ning LI, Fanglei ZENG, Jianning DING. Preparation and performance of a flame-retardant gel polymer electrolyte [J]. Energy Storage Science and Technology, 2024, 13(8): 2529-2540. |
[10] | Chaofeng XU, Xiaolei HAN, Jinzhi WANG, Xiaojun WANG, Zhiming LIU, Jingwen ZHAO. Crystalline zinc-ion solid-state electrolytes based on weak coordination environments [J]. Energy Storage Science and Technology, 2024, 13(8): 2519-2528. |
[11] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[12] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[13] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[14] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[15] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||