Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2665-2678.doi: 10.19799/j.cnki.2095-4239.2024.0050
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yanyan KONG1,2(), Xiong ZHANG2(), Yabin AN2, Chen LI2, Xianzhong SUN2, Kai WANG2, Yanwei MA1,2()
Received:
2024-01-17
Revised:
2024-03-01
Online:
2024-08-28
Published:
2024-08-15
Contact:
Xiong ZHANG, Yanwei MA
E-mail:kongyanyan@mail.iee.ac.cn;zhangxiong@mail.iee.ac.cn;ywma@mail.iee.ac.cn
CLC Number:
Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors[J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678.
Table 1
MOF precursors derived porous carbon-based materials with different composition types and their electrochemical properties applied to lithium-ion capacitors"
类型 | MOF 前驱体 | 衍生 负极材料 | 正极 材料 | 电压 窗口/V | 最高能量密度/(Wh/kg) @对应功率密度/(kW/kg) | 最高功率密度/(kW/kg) @对应能量密度/Wh/kg | 电流密度/(A/g) @循环次数 | 循环容量保持率 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
类型一 | Fe-BTC | OLC | AC | 2.2~3.8 | 195@0.138 | 17.717@92 | 1@4000 | 61.5% | [ |
Zn-MOF | Z-T-PC | PC | 1.5~4 | 95.8@0.2644 | 46@54.6 | 2@5000 | 83.67% | [ | |
ZIF-8 | HCF-2 | a-HCF-2 | 1~4.5 | 162@0.48 | 15.8@114.5 | 5@15000 | 76% | [ | |
类型二 | ZIF-67 | Co@N-C | HPC | 0~4 | 125.28@0.2 | 10@38.33 | 1@1000 | 91.74% | [ |
Mn-MOF | MnO2 @C-NS | NPCs | 0.01~4 | 166@0.55 | 3.9@49.3 | 1@5000 | 91% | [ | |
CoZn-MOF | Co3ZnC@NC | MPC | 1.0~4.5 | 141.4@0.275 | 10.3@15.2 | 1@1000 | 80% | [ | |
CoZn-MOF | Co3ZnC@NC | 预锂化石墨 | 1~3 | 67.1@0.12 | 4.1@1.48 | 0.1@1000 | — | [ | |
类型三 | Mn-MOF | Mn2SnO4@C | CSBC | 1.5~4.5 | 217.9@0.21 | 21@25 | 2@5000 | 79% | [ |
ZIF-67 | CoTe2@N-C | HPC | 0~4 | 144.5@0.2 | 10@38.89 | 1@1000 | 90.95% | [ | |
ZIF-67 | CoSn x @CPAN | PDPC | 1.5~4.2 | 143@0.285 | 22.8@41 | 2@5000 | 82.9% | [ | |
钼基MOF | MoO2@rGO | PANI@rGO | 1.25~4.5 | 241.7@0.2875 | 28.75@117.8 | 5@10000 | 96% | [ |
1 | WANG H W, ZHU C R, CHAO D L, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): 1702093. DOI: 10.1002/adma.201702093. |
2 | XIAO X H, DENG X L, TIAN Y, et al. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors[J]. Nano Energy, 2022, 103: 107797. DOI: 10.1016/j.nanoen.2022.107797. |
3 | LIANG J X, WANG D W. Design rationale and device configuration of lithium-ion capacitors[J]. Advanced Energy Materials, 2022, 12(25): 2200920. DOI: 10.1002/aenm.202200920. |
4 | 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. DOI: 10.3787/j.issn.1000-0976.2016.01.001. |
ZOU C N, ZHAO Q, ZHANG G S, et al. Energy revolution: From a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. DOI: 10.3787/j.issn.1000-0976.2016.01.001. | |
5 | KONG P, ZHU L, LI F R, et al. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries[J]. ChemElectroChem, 2019, 6(22): 5642-5650. DOI: 10.1002/celc.201901517. |
6 | MAO Z F, WANG H W, CHAO D L, et al. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors[J]. Small, 2020, 16(33): 2001950. DOI: 10.1002/smll.202001950. |
7 | TANG B Y, SHAN L T, LIANG S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. DOI: 10.1039/C9EE02526J. |
8 | 李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. |
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252. | |
9 | 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展[J]. 储能科学与技术, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. |
QIAO L B, ZHANG X H, SUN X Z, et al. Advances in battery-supercapacitor hybrid energy storage system[J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. | |
10 | CAI P, ZOU K Y, ZOU G Q, et al. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance[J]. Nanoscale, 2020, 12(6): 3677-3685. DOI: 10.1039/c9nr10339b. |
11 | SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18): 9233-9280. DOI: 10.1021/acs.chemrev.8b00252. |
12 | 胡涛, 张熊, 安亚斌, 等. 锂离子电容器碳正极材料的研究进展[J]. 化工学报, 2020, 71(6): 2530-2546. DOI: 10.11949/0438-1157.20200338. |
HU T, ZHANG X, AN Y B, et al. Research progress of carbon cathode materials for Li-ion capacitors[J]. CIESC Journal, 2020, 71(6): 2530-2546. DOI: 10.11949/0438-1157.20200338. | |
13 | MA Y F, CHANG H C, ZHANG M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27(36): 5296-5308. DOI: 10.1002/adma. 201501622. |
14 | ZHU G Y, CHEN T, WANG L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials, 2018, 14: 246-252. DOI: 10.1016/j.ensm.2018.04.009. |
15 | 汪晨阳, 张安邦, 常增花, 等. 锂离子电池用多孔电极结构设计及制备技术进展[J]. 材料工程, 2022, 50(1): 67-79. DOI: 10.11868/j.issn.1001-4381.2021.000021. |
WANG C Y, ZHANG A B, CHANG Z H, et al. Progress in structure design and preparation of porous electrodes for lithium ion batteries[J]. Journal of Materials Engineering, 2022, 50(1): 67-79. DOI: 10.11868/j.issn.1001-4381.2021.000021. | |
16 | 张利星, 张熊, 李晨, 等. 煤基碳负极材料在锂离子电池中的应用研究进展[J]. 石油化工高等学校学报, 2022, 35(6): 10-18. DOI: 10.3969/j.issn.1006-396X.2022.06.002. |
ZHANG L X, ZHANG X, LI C, et al. Research progress of application of coal-based carbon anode materials in lithium-ion batteries[J]. Journal of Petrochemical Universities, 2022, 35(6): 10-18. DOI: 10.3969/j.issn.1006-396X.2022.06.002. | |
17 | GUAN C, SUMBOJA A, ZANG W J, et al. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries[J]. Energy Storage Materials, 2019, 16: 243-250. DOI: 10.1016/j.ensm.2018.06.001. |
18 | SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2): 220-224. DOI: 10.1038/nmat4766. |
19 | ZHAO S L, WANG Y, DONG J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184. DOI: 10.1038/nenergy. 2016.184. |
20 | SONG G J, SHI Y X, JIANG S, et al. Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(42): 2303121. DOI: 10.1002/adfm.202303121. |
21 | 张晓虎, 孙现众, 张熊, 等. 锂离子电容器在新能源领域应用展望[J]. 电工电能新技术, 2020, 39(11): 48-58. DOI: 10.12067/ATEEE2001022. |
ZHANG X H, SUN X Z, ZHANG X, et al. Prospect of lithium-ion capacitor application in new energy field[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(11): 48-58. DOI: 10.12067/ATEEE2001022. | |
22 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. DOI: 10.1038/nmat3601. |
23 | BROUSSE T, BÉLANGER D, LONG J W. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society, 2015, 162(5): A5185-A5189. DOI: 10.1149/2.0201505jes. |
24 | CHOI C, ASHBY D S, BUTTS D M, et al. Achieving high energy density and high power density with pseudocapacitive materials[J]. Nature Reviews Materials, 2020, 5: 5-19. DOI: 10.1038/s41578-019-0142-z. |
25 | CHEN J L, QIAN J J. Insights on MOF-derived metal-carbon nanostructures for oxygen evolution[J]. Dalton Transactions, 2024, 53(7): 2903-2916. DOI: 10.1039/D3DT04263D. |
26 | HAN Q Q, JIN T, LI Y, et al. Tin nanoparticles embedded in an N-doped microporous carbon matrix derived from ZIF-8 as an anode for ultralong-life and ultrahigh-rate lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2019, 6(5): 1238-1244. DOI: 10.1039/C9QI00219G. |
27 | LI Z X, ZHANG X, LIU Y C, et al. Controlling the BET surface area of porous carbon by using the Cd/C ratio of a Cd-MOF precursor and enhancing the capacitance by activation with KOH[J]. Chemistry-A European Journal, 2016, 22(49): 17734-17747. DOI: 10.1002/chem.201603072. |
28 | MARPAUNG F, KIM M, KHAN J H, et al. Metal-organic framework (MOF)-derived nanoporous carbon materials[J]. Chemistry-An Asian Journal, 2019, 14(9): 1331-1343. DOI: 10.1002/asia.201900026. |
29 | WU K, CAO X, LI M Y, et al. Bottom-up synthesis of MoS2/CNTs hollow polyhedron with 1T/2H hybrid phase for superior potassium-ion storage[J]. Small, 2020, 16(43): e2004178. DOI: 10.1002/smll.202004178. |
30 | LI H X, CHEN J T, ZHANG L, et al. A metal-organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2020, 8(32): 16302-16311. DOI: 10.1039/D0TA04912C. |
31 | ZHENG F C, YANG Y, CHEN Q W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature Communications, 2014, 5: 5261. DOI: 10.1038/ncomms6261. |
32 | CENDROWSKI K, SKUMIAL P, SPERA P, et al. Thermally induced formation of zinc oxide nanostructures with tailoring morphology during metal organic framework (MOF-5) carbonization process[J]. Materials & Design, 2016, 110: 740-748. DOI: 10.1016/j.matdes.2016.08.043. |
33 | SRINIVAS G, KRUNGLEVICIUTE V, GUO Z X, et al. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume[J]. Energy & Environmental Science, 2014, 7(1): 335-342. DOI: 10.1039/C3EE42918K. |
34 | ZHAN F Y, WANG H Y, HE Q Q, et al. Metal-organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors[J]. Chemical Science, 2022, 13(41): 11981-12015. DOI: 10.1039/d2sc04012c. |
35 | REN J C, HUANG Y L, ZHU H, et al. Recent progress on MOF-derived carbon materials for energy storage[J]. Carbon Energy, 2020, 2(2): 176-202. DOI: 10.1002/cey2.44. |
36 | WANG H F, CHEN L Y, PANG H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49(5): 1414-1448. DOI: 10.1039/c9cs00906j. |
37 | YANG Y Q, DONG H, WANG Y, et al. Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation[J]. Journal of Solid State Chemistry, 2018, 258: 582-587. DOI: 10.1016/j.jssc.2017.11.033. |
38 | KONG L J, ZHONG M, LIU Y Y, et al. Ultra-small V2O3 embedded N-doped porous carbon nanorods with superior cycle stability for sodium-ion capacitors[J]. Journal of Power Sources, 2018, 405: 37-44. DOI: 10.1016/j.jpowsour.2018.10.016. |
39 | 顾涛, 任晶, 郑建勇, 等. MOF衍生多孔碳材料的制备以及在LIBs负极中的应用[J]. 功能材料, 2021, 52(10): 10001-10007, 10097. DOI: 10.3969/j.issn.1001-9731.2021.10.001. |
GU T, REN J, ZHENG J Y, et al. Preparation of MOF-derivedporous carbon materials and their applications in anode materials for LIBs[J]. Journal of Functional Materials, 2021, 52(10): 10001-10007, 10097. DOI: 10.3969/j.issn.1001-9731. 2021.10.001. | |
40 | WANG B R, HU Y T, PAN Z H, et al. MOF-derived manganese oxide/carbon nanocomposites with raised capacitance for stable asymmetric supercapacitor[J]. RSC Advances, 2020, 10(57): 34403-34412. DOI: 10.1039/D0RA05494A. |
41 | GE P, HOU H S, LI S J, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage[J]. Advanced Functional Materials, 2018, 28(30): 1801765. DOI: 10.1002/adfm.201801765. |
42 | LI A, TONG Y, CAO B, et al. MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance[J]. Scientific Reports, 2017, 7: 40574. DOI: 10.1038/srep40574. |
43 | HU M, REBOUL J, FURUKAWA S, et al. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. Journal of the American Chemical Society, 2012, 134(6): 2864-2867. DOI: 10.1021/ja208940u. |
44 | LI K, QIN R C, XIONG Y Q, et al. MOF-derived octahedral-shaped Fe3O4@C composites for lithium storage[J]. Journal of Electronic Materials, 2023, 52(5): 3311-3320. DOI: 10.1007/s11664-023-10301-4. |
45 | ZHANG J, XU C, ZHANG Y, et al. Structural and compositional analysis of MOF-derived carbon nanomaterials for the oxygen reduction reaction [J]. Chemical Communications, 2024.https://api.semanticscholar.org/CorpusID:267547216. |
46 | YANG L, CHEN J W, PARK S, et al. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries[J]. Energy Materials, 2023, 3(5): 300042. DOI: 10.20517/energymater.2023.29. |
47 | WU L M, LIU Y G, ZHAO H, et al. MOF-derived long spindle-like carbon-coated ternary transition-metal-oxide composite for lithium storage[J]. ACS Omega, 2022, 7(19): 16837-16846. DOI: 10.1021/acsomega.2c01988. |
48 | YAO L, GU Q F, YU X B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano, 2021, 15(2): 3228-3240. DOI: 10.1021/acsnano.0c09898. |
49 | DIMAS CHANDRA PERMANA A, OMAR A, GUILLERMO GONZALEZ-MARTINEZ I, et al. MOF-derived onion-like carbon with superior surface area and porosity for high performance lithium-ion capacitors[J]. Batteries & Supercaps, 2022, 5(5): 2100353. DOI: 10.1002/batt.202100353. |
50 | OMICHI K, RAMOS-SANCHEZ G, RAO R, et al. Origin of excess irreversible capacity in lithium-ion batteries based on carbon nanostructures[J]. Journal of the Electrochemical Society, 2015, 162(10): A2106-A2115. DOI: 10.1149/2.0591510jes. |
51 | CHEN C, LI X R, LI J X, et al. A high specific surface area porous carbon skeleton derived from MOF for high-performance lithium-ion capacitors[J]. IOP Conference Series: Earth and Environmental Science, 2021, 844(1): 012002. DOI: 10.1088/1755-1315/844/1/012002. |
52 | LI S N, XU Y N, LIU W H, et al. Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors[J]. Green Energy & Environment, 2024, 9(3): 573-583. DOI: 10.1016/j.gee.2022.10.006. |
53 | DUBAL D P, JAYARAMULU K, SUNIL J, et al. Metal-organic framework (MOF) derived electrodes with robust and fast lithium storage for Li-ion hybrid capacitors[J]. Advanced Functional Materials, 2019, 29(19): 1900532. DOI: 10.1002/adfm. 201900532. |
54 | LI L F, WEN Y D, HAN G K, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction[J]. Chemical Engineering Journal, 2022, 437: 135320. DOI: 10.1016/j.cej.2022.135320. |
55 | XU X L, ZHANG X M, KUANG Z C, et al. Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site[J]. Applied Catalysis B: Environmental, 2022, 309: 121290. DOI: 10.1016/j.apcatb.2022.121290. |
56 | OCK I W, LEE J, KANG J K. Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors[J]. Advanced Energy Materials, 2020, 10(48): 2001851. DOI: 10.1002/aenm.202001851. |
57 | BIAN Y, WANG S J, JIN D D, et al. A general anion exchange strategy to transform metal-organic framework embedded nanofibers into high-performance lithium-ion capacitors[J]. Nano Energy, 2020, 75: 104935. DOI: 10.1016/j.nanoen.2020.104935. |
58 | DUAN Y K, LI Z W, ZHANG S C, et al. Metal-organic frameworks (MOFs)-derived Mn2SnO4@C anode based on dual lithium storage mechanism for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal, 2023, 477: 146914. DOI: 10.1016/j.cej.2023.146914. |
59 | ZHANG H J, JIA Q C, KONG L B. Metal-organic framework-derived nitrogen-doped three-dimensional porous carbon loaded CoTe2 nanoparticles as anodes for high energy lithium-ion capacitors[J]. Journal of Energy Storage, 2022, 47: 103617. DOI: 10.1016/j.est.2021.103617. |
60 | JIA Q C, ZHANG H J, KONG L B. Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors[J]. Journal of Electroanalytical Chemistry, 2021, 893: 115326. DOI: 10.1016/j.jelechem.2021.115326. |
61 | TANG Y F, LI H W, ZHANG R N, et al. Co3ZnC@NC material derived from ZIF-8 for lithium-ion capacitors[J]. ACS Omega, 2021, 6(43): 28528-28537. DOI: 10.1021/acsomega.1c02271. |
[1] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[2] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[3] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[4] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[5] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[6] | Shugang LIU, Bo MENG, Zhenglong LI, Yaxiong YANG, Jian CHEN. Electrochemical performance of chemical prelithiated Li x (Mg, Ni, Zn, Cu, Co) 1-x O high-entropy oxide as anode material for lithium ion battery [J]. Energy Storage Science and Technology, 2023, 12(3): 743-753. |
[7] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[8] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[9] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[10] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[11] | Yuhe YUAN, liang LIU, Hongtao ZHANG, Qizheng YI, Yongpeng ZHANG, Yanzhe GUO, Wenchang YUAN, Xichao LI. Study on self-discharge detection method of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2022, 11(2): 690-696. |
[12] | Weixiang CHENG, Xingwen HUANG, Yuezhu LI, Junqi HU, Songyi LIAO, Yonggang MIN. Advances in layered metal disulfide as anode material for Na-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(10): 3062-3075. |
[13] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[14] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[15] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||