Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2649-2664.doi: 10.19799/j.cnki.2095-4239.2024.0180
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yuan YAO(), Ruoqi ZONG, Jianli GAI()
Received:
2024-03-04
Revised:
2024-05-07
Online:
2024-08-28
Published:
2024-08-15
Contact:
Jianli GAI
E-mail:yaoyuan@aesit.com.cn;gaijl669@126.com
CLC Number:
Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664.
Fig. 4
(a) The SEI evolution process on the surface of YS-SbC when Sb is confined within or breaks throughout the carbon shell[24]; (b) Preparation process of multi-level dual carbon modified Sb composite anode[25]; (c) Structure of HP-Sb@3DNC and schematic diagram of sodium-ion/electron transport pathway[27]; (d) Preparation process of Sb@Void@GDY[30]"
Fig. 7
(a) Schematic diagram of structural changes in uncoated and nitrogen doped carbon coated Bi nanospheres [56]; (b) Schematic diagram of multi-scale layered structure [58]; (c) Preparation process of three-dimensional porous hard carbon skeleton composite structure based on MOFs [60]; (d) Schematic diagram of the reduction process assisted by molten salt [65]"
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI: 10.1038/451652a. |
2 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. DOI: 10.1038/natrevmats.2018.13. |
3 | USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6: 1020-1035. DOI: 10.1038/s41578-021-00324-w. |
4 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. DOI: 10.19799/j.cnki.2095-4239.2020.0130. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. DOI: 10.19799/j.cnki.2095-4239.2020.0130. | |
5 | 孙畅, 邓泽荣, 江宁波, 等. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. DOI: 10.19799/j.cnki.2095-4239.2021.0719. |
SUN C, DENG Z R, JIANG N B, et al. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. DOI: 10.19799/j.cnki.2095-4239. 2021.0719. | |
6 | 陈娜, 李安琪, 郭子祥, 等. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展[J]. 储能科学与技术, 2023, 12(11): 3340-3351. DOI: 10.19799/j.cnki.2095-4239.2023.0467. |
CHEN N, LI A Q, GUO Z X, et al. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351. DOI: 10.19799/j.cnki.2095-4239.2023.0467. | |
7 | 刘飞, 赵培文, 赵经香, 等. 钠离子电池硬碳负极材料研究进展[J]. 储能科学与技术, 2022, 11(11): 3497-3509. DOI: 10.19799/j.cnki.2095-4239.2022.0233. |
LIU F, ZHAO P W, ZHAO J X, et al. Research progress of hard carbon anode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. DOI: 10.19799/j.cnki.2095-4239.2022.0233. | |
8 | LIU Z G, LU Z Y, GUO S H, et al. Toward high performance anodes for sodium-ion batteries: From hard carbons to anode-free systems[J]. ACS Central Science, 2023, 9(6): 1076-1087. DOI: 10.1021/acscentsci.3c00301. |
9 | TAN H T, CHEN D, RUI X H, et al. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities[J]. Advanced Functional Materials, 2019, 29(14): 1808745. DOI: 10.1002/adfm.201808745. |
10 | TIAN W F, ZHANG S L, HUO C X, et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries[J]. ACS Nano, 2018, 12(2): 1887-1893. DOI: 10.1021/acsnano.7b08714. |
11 | 李莹, 来雪琦, 曲津朋, 等. 钠离子电池用高性能锑基负极材料的调控策略研究进展[J]. 物理化学学报, 2022, 38(11): 45-71. DOI: 10.3866/PKU.WHXB202204049. |
LI Y, LAI X Q, QU J P, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(11): 45-71. DOI: 10.3866/PKU.WHXB202204049. | |
12 | YANG Y C, SHI W, LENG S L, et al. Multidimensional antimony nanomaterials tailored by electrochemical engineering for advanced sodium-ion and potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 628: 41-52. DOI: 10.1016/j.jcis.2022.08.041. |
13 | KONG B, ZU L H, PENG C X, et al. Direct superassemblies of freestanding metal-carbon frameworks featuring reversible crystalline-phase transformation for electrochemical sodium storage[J]. Journal of the American Chemical Society, 2016, 138(50): 16533-16541. DOI: 10.1021/jacs.6b10782. |
14 | ALLAN P K, GRIFFIN J M, DARWICHE A, et al. Tracking sodium-antimonide phase transformations in sodium-ion anodes: Insights from operando pair distribution function analysis and solid-state NMR spectroscopy[J]. Journal of the American Chemical Society, 2016, 138(7): 2352-2365. DOI: 10.1021/jacs.5b13273. |
15 | TESFAMHRET Y, CARBONI M, ASFAW H D, et al. Revealing capacity fading in Sb-based anodes using symmetric sodium-ion cells[J]. Journal of Physics: Materials, 2021, 4(2): 024007. DOI: 10.1088/2515-7639/abebe9. |
16 | CHEN B C, LIANG M, WU Q Z, et al. Recent developments of antimony-based anodes for sodium- and potassium-ion batteries[J]. Transactions of Tianjin University, 2022, 28(1): 6-32. DOI: 10.1007/s12209-021-00304-9. |
17 | TIAN W F, ZHANG S L, HUO C X, et al. Few-layer antimonene: Anisotropic expansion and reversible crystalline-phase evolution enable large-capacity and long-life Na-ion batteries[J]. ACS Nano, 2018, 12(2): 1887-1893. DOI: 10.1021/acsnano.7b08714. |
18 | SU J C, LI W K, DUAN T F, et al. Graphene/antimonene/graphene heterostructure: A potential anode for sodium-ion batteries[J]. Carbon, 2019, 153: 767-775. DOI: 10.1016/j.carbon.2019.07.053. |
19 | LIANG L Y, XU Y, WANG C L, et al. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(10): 2954-2962. DOI: 10.1039/C5EE00878F. |
20 | QIU T Y, YANG L, XIANG Y E, et al. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon[J]. Small Methods, 2021, 5(7): e2100188. DOI: 10.1002/smtd.202100188. |
21 | HOU H S, JING M J, YANG Y C, et al. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16189-16196. DOI: 10.1021/am504310k. |
22 | YANG X M, ZHU Y M, WU D J, et al. Observing sodiation process and achieving high efficiency of yolk-shell antimony@carbon rods[J]. Science China Materials, 2022, 65(2): 349-355. DOI: 10.1007/s40843-021-1737-6. |
23 | ZHAI K, HUANG H B, LI X N, et al. 3D network and wrapping strategy derived loofah-like Sb@CNTs@C for high performance K+/Na+ storage[J]. Journal of Alloys and Compounds, 2024, 976: 172953. DOI: 10.1016/j.jallcom.2023.172953. |
24 | YANG X M, ZHU Y M, WU D J, et al. Yolk-shell antimony/carbon: Scalable synthesis and structural stability study in sodium ion batteries[J]. Advanced Functional Materials, 2022, 32(18): 2111391. DOI: 10.1002/adfm.202111391. |
25 | XIANG Y E, HU X Y, ZHONG X, et al. Mechanism of fast storage of Li/Na in complex Sb-based hybrid system[J]. Advanced Functional Materials, 2024, 34(10): 2311478. DOI: 10.1002/adfm.202311478. |
26 | GAO H, LEE J, LU Q X, et al. Highly stable Sb/C anode for K+ and Na+ energy storage enabled by pulsed laser ablation and polydopamine coating[J]. Small, 2023, 19(4): e2205681. DOI: 10.1002/smll.202205681. |
27 | FENG B, LONG T, YANG C L, et al. Porous Sb nanocubes embedded in three-dimensional interconnected nitrogen-doped carbon frameworks for enhanced sodium storage[J]. ACS Applied Energy Materials, 2022, 5(11): 14107-14118. DOI: 10.1021/acsaem.2c02618. |
28 | ZHANG N, CHEN X J, XU J H, et al. Hexagonal Sb nanocrystals as high-capacity and long-cycle anode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(22): 26728-26736. DOI: 10.1021/acsami.3c03340. |
29 | HAN J S, LIU D M, LIU S Y, et al. A collaborative strategy for encapsulating Sb nanoparticles into porous carbon toward high and stable sodium storage[J]. Journal of Alloys and Compounds, 2022, 921: 166054. DOI: 10.1016/j.jallcom.2022.166054. |
30 | LIU Y, QING Y, ZHOU B, et al. Yolk-shell Sb@Void@graphdiyne nanoboxes for high-rate and long cycle life sodium-ion batteries[J]. ACS Nano, 2023, 17(3): 2431-2439. DOI: 10.1021/acsnano.2c09679. |
31 | PARK J, KIM M, CHOI M, et al. Sb/C composite embedded in SiOC buffer matrix via dispersion property control for novel anode material in sodium-ion batteries[J]. Journal of Power Sources, 2023, 568: 232908. DOI: 10.1016/j.jpowsour. 2023.232908. |
32 | XIE M G, LI C G, REN S Y, et al. Ultrafine Sb nanoparticles in situ confined in covalent organic frameworks for high-performance sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2022, 10(28): 15089-15100. DOI: 10.1039/D2TA01414A. |
33 | ZHANG Y, GAO H, NIU J Z, et al. Scalable fabrication of core-shell Sb@Co(OH)2 nanosheet anodes for advanced sodium-ion batteries via magnetron sputtering[J]. ACS Nano, 2018, 12(11): 11678-11688. DOI: 10.1021/acsnano.8b07227. |
34 | LI M N, LIU Y Y, QIN B, et al. Polyaniline-coated nanoporous antimony with improved performance for sodium-ion battery anodes[J]. Journal of Alloys and Compounds, 2021, 861: 158647. DOI: 10.1016/j.jallcom.2021.158647. |
35 | PENG B X, LV Z R, FANG Y Q, et al. Anchoring atomic antimony in an intercalative Mo-S framework via soft covalent bonding for fast-charging and long-lived sodium ion batteries[J]. Inorganic Chemistry Frontiers, 2023, 10(13): 3884-3890. DOI: 10.1039/D3QI00460K. |
36 | LI C, WEI G J, WANG S T, et al. Two-dimensional coupling: Sb nanoplates embedded in MoS2 nanosheets as efficient anode for advanced sodium ion batteries[J]. Materials Chemistry and Physics, 2018, 211: 375-381. DOI: 10.1016/j.matchemphys. 2018.03.010. |
37 | ARNOLD S, GENTILE A, LI Y J, et al. Design of high-performance antimony/MXene hybrid electrodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(19): 10569-10585. DOI: 10.1039/D2TA00542E. |
38 | LIANG Y W, WANG Z S, XU Z Y, et al. Highly-confined, micro-Sb/C@MXene 3D architectures with strengthened interfacial bonding for high volumetric sodium-ion storage[J]. Applied Surface Science, 2024, 651: 159234. DOI: 10.1016/j.apsusc. 2023.159234. |
39 | YAO T H, LI L, WANG H K. Embedding antimony nanoparticles into metal-organic framework derived TiO2@carbon nanotablets for high-performance sodium storage[J]. Chinese Chemical Letters, 2023, 34(10): 108186. DOI: 10.1016/j.cclet.2023.108186. |
40 | KONG M, LIU Y, ZHOU B, et al. Rational design of Sb@C@TiO2 triple-shell nanoboxes for high-performance sodium-ion batteries[J]. Small, 2020, 16(43): 2001976. DOI: 10.1002/smll.202001976. |
41 | ZHENG X T, CHEN K T, HSIEH Y Y, et al. Ultrafine antimony nanocrystals/phosphorus pitaya-like nanocomposites as anodes for high-performance sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18535-18544. DOI: 10.1021/acssuschemeng.0c06477. |
42 | QIAN H, LIU Y, CHEN H X, et al. Emerging bismuth-based materials: From fundamentals to electrochemical energy storage applications[J]. Energy Storage Materials, 2023, 58: 232-270. DOI: 10.1016/j.ensm.2023.03.023. |
43 | ZHAO W Y, GUO M, ZUO Z J, et al. Engineering sodium metal anode with sodiophilic bismuthide penetration for dendrite-free and high-rate sodium-ion battery[J]. Engineering, 2022, 11: 87-94. DOI: 10.1016/j.eng.2021.08.028. |
44 | MORTAZAVI M, YE Q J, BIRBILIS N, et al. High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights[J]. Journal of Power Sources, 2015, 285: 29-36. DOI: 10.1016/j.jpowsour.2015.03.051. |
45 | SU D W, DOU S X, WANG G X. Bismuth: A new anode for the Na-ion battery[J]. Nano Energy, 2015, 12: 88-95. DOI: 10.1016/j.nanoen.2014.12.012. |
46 | GAO H, MA W S, YANG W F, et al. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study[J]. Journal of Power Sources, 2018, 379: 1-9. DOI: 10.1016/j.jpowsour.2018.01.017. |
47 | LIU Y N, WANG Y, WANG H Q, et al. Binder-free 3D hierarchical Bi nanosheet/CNTs arrays anode for full sodium-ion battery with high voltage above 4 V[J]. Journal of Power Sources, 2022, 540: 231639. DOI: 10.1016/j.jpowsour.2022.231639. |
48 | SOTTMANN J, HERRMANN M, VAJEESTON P, et al. How crystallite size controls the reaction path in nonaqueous metal ion batteries: The example of sodium bismuth alloying[J]. Chemistry of Materials, 2016, 28(8): 2750-2756. DOI: 10.1021/acs.chemmater.6b00491. |
49 | WANG C C, WANG L B, LI F J, et al. Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes[J]. Advanced Materials, 2017, 29(35): 1702212. DOI: 10.1002/adma.201702212. |
50 | ZHOU J, CHEN J C, CHEN M X, et al. Few-layer bismuthene with anisotropic expansion for high-areal-capacity sodium-ion batteries[J]. Advanced Materials, 2019, 31(12): e1807874. DOI: 10.1002/adma.201807874. |
51 | LIU S, FENG J K, BIAN X F, et al. Advanced arrayed bismuth nanorod bundle anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(26): 10098-10104. DOI: 10.1039/C6TA02796B. |
52 | CHENG X L, LI D J, WU Y, et al. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4913-4921. DOI: 10.1039/C8TA11947C. |
53 | CHEN J, FAN X L, JI X, et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1218-1225. DOI: 10.1039/C7EE03016A. |
54 | CHENG X L, YANG H, WEI C Y, et al. Synergistic effect of 1D bismuth nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(15): 8081-8090. DOI: 10.1039/D3TA01214J. |
55 | ZHANG X S, QIU X Q, LIN J X, et al. Structure and interface engineering of ultrahigh-rate 3D bismuth anodes for sodium-ion batteries[J]. Small, 2023, 19(35): e2302071. DOI: 10.1002/smll.202302071. |
56 | YANG H, XU R, YAO Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes[J]. Advanced Functional Materials, 2019, 29(13): 1809195. DOI: 10.1002/adfm.201809195. |
57 | XUE P, WANG N N, FANG Z W, et al. Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries[J]. Nano Letters, 2019, 19(3): 1998-2004. DOI: 10.1021/acs.nanolett.8b05189. |
58 | PARK B, LEE S, HAN D Y, et al. Multiscale hierarchical design of bismuth-carbon anodes for ultrafast-charging sodium-ion full battery[J]. Applied Surface Science, 2023, 614: 156188. DOI: 10.1016/j.apsusc.2022.156188. |
59 | YIN H, LI Q W, CAO M L, et al. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries[J]. Nano Research, 2017, 10(6): 2156-2167. DOI: 10.1007/s12274-016-1408-z. |
60 | LIANG Y Z, SONG N, ZHANG Z, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage[J]. Advanced Materials, 2022, 34(28): e2202673. DOI: 10.1002/adma.202202673. |
61 | ZHANG Y F, SU Q, XU W J, et al. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries[J]. Advanced Science, 2019, 6(16): 1900162. DOI: 10.1002/advs.201900162. |
62 | WEI S W, LI W, MA Z Z, et al. Novel bismuth nanoflowers encapsulated in N-doped carbon frameworks as superb composite anodes for high-performance sodium-ion batteries[J]. Small, 2023, 19(46): e2304265. DOI: 10.1002/smll.202304265. |
63 | ZHANG F, LIU X J, WANG B B, et al. Bi@C nanospheres with the unique petaloid core-shell structure anchored on porous graphene nanosheets as an anode for stable sodium- and potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 59867-59881. DOI: 10.1021/acsami.1c16946. |
64 | LONG H L, YIN X P, WANG X, et al. Bismuth nanorods confined in hollow carbon structures for high performance sodium- and potassium-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 787-796. DOI: 10.1016/j.jechem.2021.11.011. |
65 | QIU J X, LI S, SU X T, et al. Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage[J]. Chemical Engineering Journal, 2017, 320: 300-307. DOI: 10.1016/j.cej.2017.03.054. |
66 | CHEN J, XIAO J, LI J Y, et al. Nano-engineering induced Bi dots in situ anchored into modified porous carbon with superior sodium ion storage[J]. Journal of Materials Chemistry A, 2022, 10(38): 20635-20645. DOI: 10.1039/D2TA06256A. |
67 | YU J, ZHAO D, MA C S, et al. Vapor-phase derived ultra-fine Bismuth nanoparticles embedded in carbon nanotube networks as anodes for sodium and potassium ion batteries[J]. Journal of Colloid and Interface Science, 2023, 643: 409-419. DOI: 10.1016/j.jcis.2023.04.039. |
68 | XIONG P X, BAI P X, LI A, et al. Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries[J]. Advanced Materials, 2019, 31(48): e1904771. DOI: 10.1002/adma.201904771. |
69 | ZHU H J, WANG F C, PENG L, et al. Inlaying bismuth nanoparticles on graphene nanosheets by chemical bond for ultralong-lifespan aqueous sodium storage[J]. Angewandte Chemie International Edition, 2023, 62(2): e202212439. DOI: 10.1002/anie.202212439. |
70 | MA H, LI J B, YANG J, et al. Bismuth nanoparticles anchored on Ti3C2Tx MXene nanosheets for high-performance sodium-ion batteries[J]. Chemistry–An Asian Journal, 2021, 16(22): 3774-3780. DOI: 10.1002/asia.202100974. |
71 | QIAN J F, XIONG Y, CAO Y L, et al. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries[J]. Nano Letters, 2014, 14(4): 1865-1869. DOI: 10.1021/nl404637q. |
72 | ZHANG N, CHEN X J, ZHAO J J, et al. Mass produced Sb/P@C composite nanospheres for advanced sodium-ions battery anodes[J]. Electrochimica Acta, 2023, 439: 141602. DOI: 10.1016/j.electacta.2022.141602. |
73 | MA W S, YIN K B, GAO H, et al. Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries[J]. Nano Energy, 2018, 54: 349-359. DOI: 10.1016/j.nanoen.2018.10.027. |
74 | LI X Y, XIAO S H, NIU X B, et al. Efficient stress dissipation in well-aligned pyramidal SbSn alloy nanoarrays for robust sodium storage[J]. Advanced Functional Materials, 2021, 31(37): 2104798. DOI: 10.1002/adfm.202104798. |
75 | SONG Z Y, WANG G, CHEN Y, et al. In situ three-dimensional cross-linked carbon nanotube-interspersed SnSb@CNF as freestanding anode for long-term cycling sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142289. DOI: 10.1016/j.cej.2023.142289. |
76 | LI X Y, ZHANG X, NIU X B, et al. Strain retarding in multilayered hierarchical Sn-doped Sb nanoarray for durable sodium storage[J]. Advanced Functional Materials, 2023, 33(33): 2300914. DOI: 10.1002/adfm.202300914. |
77 | KALISVAART W P, OLSEN B C, LUBER E J, et al. Sb-Si alloys and multilayers for sodium-ion battery anodes[J]. ACS Applied Energy Materials, 2019, 2(3): 2205-2213. DOI: 10.1021/acsaem.8b02231. |
78 | GAO H, NIU J Z, ZHANG C, et al. A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries[J]. ACS Nano, 2018, 12(4): 3568-3577. DOI: 10.1021/acsnano. 8b00643. |
79 | ZHAO Y B, MANTHIRAM A. High-capacity, high-rate Bi-Sb alloy anodes for lithium-ion and sodium-ion batteries[J]. Chemistry of Materials, 2015, 27(8): 3096-3101. DOI: 10.1021/acs.chemmater.5b00616. |
80 | USUI H, DOMI Y, ITODA Y, et al. Solid solution strengthening of bismuth antimonide as a sodium storage material[J]. Energy & Fuels, 2021, 35(22): 18833-18838. DOI: 10.1021/acs.energyfuels.1c02987. |
81 | WANG Z Z, WANG J, NI J F, et al. Structurally durable bimetallic alloy anodes enabled by compositional gradients[J]. Advanced Science, 2022, 9(16): e2201209. DOI: 10.1002/advs.202201209. |
82 | LI X Y, GUO Y Y, HU Z J, et al. Improving the initial coulombic efficiency of sodium-storage antimony anodes via electrochemically alloying bismuth[J]. ACS Applied Materials & Interfaces, 2023, 15(39): 45926-45937. DOI: 10.1021/acsami.3c10307. |
83 | NI J F, LI X Y, SUN M L, et al. Durian-inspired design of bismuth-antimony alloy arrays for robust sodium storage[J]. ACS Nano, 2020, 14(7): 9117-9124. DOI: 10.1021/acsnano.0c04366. |
84 | ZHAO J J, XU J H, LI Q, et al. BiSbx nanoalloys encapsulated by carbon fibers as high rate sodium ions storage anodes[J]. Journal of Electroanalytical Chemistry, 2023, 939: 117452. DOI: 10.1016/j.jelechem.2023.117452. |
85 | WANG J F, LIN Y H, LV W, et al. Bismuth-antimony alloy nanoparticles embedded in 3D hierarchical porous carbon skeleton film for superior sodium storage[J]. Molecules, 2023, 28(18): 6464. DOI: 10.3390/molecules28186464. |
86 | MA W S, YU B, TAN F Q, et al. Bismuth-antimony alloy embedded in carbon matrix for ultra-stable sodium storage[J]. Materials, 2023, 16(6): 2189. DOI: 10.3390/ma16062189. |
87 | WANG X X, FENG B, HUANG L M, et al. Superior electrochemical performance of Sb-Bi alloy for sodium storage: Understanding from alloying element effects and new cause of capacity attenuation[J]. Journal of Power Sources, 2022, 520: 230826. DOI: 10.1016/j.jpowsour.2021.230826. |
88 | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9: 134-142. DOI: 10.1038/s41560-023-01414-5. |
[1] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[2] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[3] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[4] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[5] | Dan LI, Tie MA, Hanhao LIU, Li GUO. Carbon-coated nano-bismuth as high-rate sodium anode material [J]. Energy Storage Science and Technology, 2024, 13(6): 1775-1785. |
[6] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[7] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[8] | Li ZHOU, Yan LIU. Application and development of alloy materials in energy storage technology [J]. Energy Storage Science and Technology, 2024, 13(6): 1874-1876. |
[9] | Chenxi LIANG, Zhenbin WANG, Mingjin ZHANG, Cunhua MA, Ning LIANG. Research progress on magnesium-based solid hydrogen storage nanomaterials [J]. Energy Storage Science and Technology, 2024, 13(3): 788-824. |
[10] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[11] | Wenbiao LI, Haitao GENG, Yibo GAO, Zhaoshun GAO, Bao WANG. Cu-In/Bi alloys with lithiophilic sites induce uniform lithium nucleation for high-rate lithium-metal batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2735-2745. |
[12] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[13] | Zhun FENG. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode [J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[14] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[15] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||