1 |
SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958.
|
2 |
KUBOTA K, KOMABA S. Review—Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2538-A2550.
|
3 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
4 |
LAMB J, MANTHIRAM A. Synthesis control of layered oxide cathodes for sodium-ion batteries: A necessary step toward practicality[J]. Chemistry of Materials, 2020, 32(19): 8431-8441.
|
5 |
ZHAO C L, WANG Q D, YAO Z P, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517): 708-711.
|
6 |
LU Z H, DAHN J R. In situ X-Ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2[J]. Journal of the Electrochemical Society, 2001, 148(11): A1225.
|
7 |
CHEN M Z, LIU Q N, WANG S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): 1803609.
|
8 |
CHENG Z W, FAN X Y, YU L Z, et al. A rational biphasic tailoring strategy enabling high-performance layered cathodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(19): e202117728.
|
9 |
LEE E, LU J, REN Y, et al. Layered P2/O3 intergrowth cathode: Toward high power Na-ion batteries[J]. Advanced Energy Materials, 2014, 4(17): 1400458.
|
10 |
LE NGUYEN M, VAN NGUYEN H, VAN TRAN M, et al. Electrochemical properties and ex situ study of sodium intercalation cathode P2/P3-NaNi1/3Mn1/3Co1/3O2[J]. Journal of Chemistry, 2021, 2021: 1-9.
|
11 |
WANG J E, KIM H, JUNG Y H, et al. Designing high energy sodium-ion battery cathodes by utilizing P2/O3 biphasic structure and lithium honeycomb ordering[J]. Small, 2021, 17(30): 2100146.
|
12 |
JI H C, ZHAI J J, CHEN G J, et al. Surface engineering suppresses the failure of biphasic sodium layered cathode for high performance sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(12): 2109319.
|
13 |
XU G L, AMINE R, XU Y F, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1677-1693.
|
14 |
SATHIYA M, HEMALATHA K, RAMESHA K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853.
|
15 |
NGUYEN H, NGUYEN H T N, LETHANHH, et al. A study of the electrochemical kinetics of sodium intercalation in P2/O1/O3-NaNi1/3Mn1/3Co1/3O2[J]. Journal of Solid State Electrochemistry, 2020, 24(1): 57-67.
|
16 |
HUBBARD C R, SNYDER R L. RIR-measurement and use in quantitative XRD[J]. Powder Diffraction, 1988, 3(2): 74-77.
|
17 |
SUN Y, WANG H, MENG D C, et al. Degradation mechanism of O3-Type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067.
|
18 |
XU C L, CAI H R, CHEN Q L, et al. Origin of air-stability for transition metal oxide cathodes in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5338-5345.
|
19 |
MATSUI M, MIZUKOSHI F, HASEGAWA H, et al. Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229346.
|
20 |
LI Y M, YANG Z Z, XU S Y, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(6): 1500031.
|
21 |
DARBAR D, MURALIDHARAN N, HERMANN R P, et al. Evaluation of electrochemical performance and redox activity of Fe in Ti doped layered P2-Na0.67Mn0.5Fe0.5O2 cathode for sodium ion batteries[J]. Electrochimica Acta, 2021, 380: 138156.
|
22 |
LIANG X H, SUN Y K. A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(44): 2206154.
|
23 |
RAMASAMY H V, KALIYAPPAN K, THANGAVEL R, et al. Efficient method of designing stable layered cathode material for sodium ion batteries using aluminum doping[J]. The Journal of Physical Chemistry Letters, 2017, 8(20): 5021-5030.
|
24 |
TANG K, YU X Q, SUN J P, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011, 56(13): 4869-4875.
|
25 |
ZUO W H, QIU J M, LIU X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres[J]. Nature Communications, 2020, 11: 3544.
|