Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2715-2726.doi: 10.19799/j.cnki.2095-4239.2023.0273
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jinyu GE4(), Xianghui MENG1, Yongjun QI1, Hao SUN2, Jianjun LI2, Bing ZHOU3, Tingting GUI2, Qingwei XING2, Man HUANG4()
Received:
2023-04-28
Revised:
2023-05-07
Online:
2023-09-05
Published:
2023-09-16
Contact:
Man HUANG
E-mail:gejinyu2022@163.com;huangman_90@163.com
CLC Number:
Jinyu GE, Xianghui MENG, Yongjun QI, Hao SUN, Jianjun LI, Bing ZHOU, Tingting GUI, Qingwei XING, Man HUANG. The effect of different heteroatoms-doped Na2Ti3O7 on sodium ion storage[J]. Energy Storage Science and Technology, 2023, 12(9): 2715-2726.
Fig. 1
Morphology and structural characterization of Na2Ti3O7 nanosheets array. (a), (b) SEM images and (c), (d) TEM images of P-NTO nanosheets. (e) High-resolution TEM image. Inset of (e) Electron diffraction of P-NTO nanosheets. (f) XRD patterns for P-NTO, S-NTO, and NTO. (g), (h) HAADF and elemental mapping images of P-NTO and S-NTO nanosheets"
Fig. 3
Electrochemical performance of P-NTO and S-NTO electrode. CV curves for the first 3 cycles of P-NTO (a), S-NTO (d) and NTO (g) measured at a sweep rate of 0.1 mV/s. Charge-discharge curves of P-NTO (b), S-NTO (e) and NTO at different rates (h). (c) Rate performance of P-NTO and S-NTO. (f), (j) Cycling performances of P-NTO and S-NTO at a current density of 0.5 A/g and 0.2 A/g. (i) Cycling performances of NTO at a current density of 0.5 A/g. (k) 6500 continuous cycles at a rate of 2 A/g"
Fig. 4
Kinetic analysis of the electrochemical behavior of S-NTO, P-NTO and NTO electrode. (a)-(c) CV curves of S-NTO, P-NTO and NTO at various sweep rates from 0.1 to 2 mV/s. (d)-(f) The determined b-value for the S-NTO, P-NTO and NTO calculated through the relationship between peak current and scan rate. (g)-(i) S-NTO, P-NTO and NTO capacitance contribution ratio at different sweep rates"
1 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
2 | WU Z P, WANG Y L, LIU X B, et al. Carbon-nanomaterial-based flexible batteries for wearable electronics[J]. Advanced Materials, 2019, 31(9): 1800716. |
3 | GUDE V G. Energy storage for desalination processes powered by renewable energy and waste heat sources[J]. Applied Energy, 2015, 137: 877-898. |
4 | LI Z, LI B R, CUI L, et al. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783. |
5 | LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536. |
6 | WANG L P, YU L H, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(18): 9353-9378. |
7 | 张宁, 刘永畅, 陈程成, 等. 钠离子电池电极材料研究进展[J]. 无机化学学报, 2015, 31(9): 1739-1750. |
ZHANG N, LIU Y C, CHEN C C, et al. Research on electrode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1739-1750. | |
8 | WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. |
9 | RATH P C, PATRA J, HUANG H T, et al. Carbonaceous anodes derived from sugarcane bagasse for sodium-ion batteries[J]. ChemSusChem, 2019, 12(10): 2302-2309. |
10 | BALOGUN M S, LUO Y, QIU W T, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes[J]. Carbon, 2016, 98: 162-178. |
11 | HOU H S, QIU X, WEI W F, et al. Carbon anode materials for advanced sodium‐ion batteries[J]. Advanced Energy Materials, 2017, 7(24): 1602898. |
12 | LIU H L, LV C X, CHEN S, et al. Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 54-59. |
13 | SEKAR S, AQUEEL AHMED A T, KIM D Y, et al. One-pot synthesized biomass C-Si nanocomposites as an anodic material for high-performance sodium-ion battery[J]. Nanomaterials, 2020, 10(9): 1728. |
14 | CHEN S L, FENG F, MA Z F. Lignin-derived nitrogen-doped porous ultrathin layered carbon as a high-rate anode material for sodium-ion batteries[J]. Composites Communications, 2020, 22: 100447. |
15 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17):1700403. |
16 | WANG N N, XU X, LIAO T, et al. Boosting sodium storage of double-shell sodium titanate microspheres constructed from 2D ultrathin nanosheets via sulfur doping[J]. Advanced Materials, 2018, 30(49): 1804157. |
17 | XIE F X, ZHANG L, SU D W, et al. Na2Ti3O7 @N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance[J]. Advanced Materials, 2017, 29(24): 1700989. |
18 | FU S D, NI J F, XU Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Letters, 2016, 16(7): 4544-4551. |
19 | PAN H L, LU X, YU X Q, et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries [J]. Adv. Energy Mater, 2013, 3(9): 1186-1194. |
20 | TANG T, DING L, JIANG Z, et al. Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications[J]. Science China Chemistry, 2020, 63(11): 1517-1542. |
21 | WAN Z M, SHAO J E, YUN J J, et al. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries[J]. Small, 2014, 10(23): 4975-4981. |
22 | SUN N, LIU H, XU B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(41): 20560-20566. |
23 | YUE L, XU W Y, LI K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science, 2021, 546: 149168. |
24 | LIU Y C, SHI M J, YAN C, et al. Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storag[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6583-6592. |
25 | HE H N, HUANG D, PANG W K, et al. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance[J]. Advanced Materials, 2018, 30(26): 1801013. |
26 | NI J F, FU S D, WU C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Advanced Materials, 2016, 28(11): 2259-2265. |
27 | LIAN Y J, XIN W L, ZHANG M, et al. Low-content Ni-doped CoS2 embedded within N, P-codoped biomass-derived carbon spheres for enhanced lithium/sodium storage[J]. Journal of Materials Science, 2019, 54(11): 8504-8514. |
28 | XIE J R, ZHU K J, MIN J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics, 2019, 25(4): 1487-1494. |
29 | WANG Q D, ZHAO C L, LU Y X, et al. Advanced nanostructured anode materials for sodium-ion batteries[J]. Small, 2017, 13(42): 1701835. |
30 | ZHANG J Y, CHEN Z Y, WANG G Y, et al. Eco-friendly and scalable synthesis of micro-/ mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries[J]. Applied Surface Science, 2020, 533: 147511. |
31 | SHEN F, ZHU H L, LUO W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 23291-23296. |
32 | CHEN H H, KE G X, WU X C, et al. Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage[J]. Chemical Engineering Journal, 2021, 406: 12677. |
[1] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[2] | Zhengguang ZHAO, Zhenying CHEN, Guangqun ZHAI, Xi ZHANG, Xiaodong ZHUANG. Preparation of Sc/O-doped sulfide electrolyte for all-solid-state batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2412-2423. |
[3] | Wenzhe HAN, Qingsong LAI, Xuanwen GAO, Wenbin LUO. Advances toward manganese-based layered oxide cathodes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1364-1379. |
[4] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[5] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[6] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[7] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[8] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[9] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[10] | Ziying CHEN, Xiang DING, Qingsong TONG, Junyan LI, Jingyu HUANG. Application progress of doping technology in Mn-based lithium rich oxide cathode materials [J]. Energy Storage Science and Technology, 2022, 11(8): 2681-2690. |
[11] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[12] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[13] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[14] | Al-jawfi IBRAHIM, Jiaqi ZHAO, Meng SHI, Xiaohong KANG. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337. |
[15] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||