Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2489-2498.doi: 10.19799/j.cnki.2095-4239.2024.0215
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2024-03-12
Revised:
2024-03-30
Online:
2024-08-28
Published:
2024-08-15
Contact:
Yongli LI
E-mail:db18500791096@163.com;yongli.li@ncepu.edu.cn
CLC Number:
Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498.
Table 2
Comparisons of electrochemical performance of NFMF@CuO-800 with other reported materials in literature"
Materials | Voltage range/V | Capacity at 1C /(mAh/g) | Capacity at 5C /(mAh/g) | Capacity at 10C /(mAh/g) | Refs. |
---|---|---|---|---|---|
Na0.66Ca0.01Ni0.33Mn0.67O1.98F0.02 | 2.0—4.3 | 84 | 62 | 48 | [ |
Na2/3Ni1/3Mn2/3O2-LiF | 2.0—4.3 | 91 | 73 | 63 | [ |
Na2/3Ni1/3Mn2/3O1.95F0.05 | 2.0—4.0 | 99 | 91 | 86 | [ |
Na0.67Ni0.15Fe0.2Mn0.65F0.05O1.95 | 1.5—4.3 | 103 | 40 | 10 | [ |
Na2/3[Ni1/3Mn2/3]O2@CuO | 2.5—4.3 | 78 | 69 | / | [ |
Na0.66Ni0.26Zn0.07Mn0.67O2@0.06ZnO | 2.5—4.3 | 96.6 | 78.3 | 68.5 | [ |
Na0.67Mn0.5Fe0.5O2@MgO | 1.5—4.2 | 87 | 15 | / | [ |
Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO-800 | 2.0—4.2 | 107.2 | 94.6 | 84.7 | This work |
1 | EFTEKHARI A, KIM D W. Sodium-ion batteries: New opportunities beyond energy storage by lithium[J]. Journal of Power Sources, 2018, 395: 336-348. DOI: 10.1016/j.jpowsour.2018.05.089. |
2 | ZHANG S S. Status, opportunities, and challenges of electrochemical energy storage[J]. Frontiers in Energy Research, 2013, 1: DOI: 10.3389/fenrg.2013.00008. |
3 | YU T W, LI G H, DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J]. Journal of Alloys and Compounds, 2023, 958: DOI: 10.1016/j.jallcom.2023.170486. |
4 | SAWICKI M, SHAW L L. Advances and challenges of sodium ion batteries as post lithium ion batteries[J]. RSC Advances, 2015, 5(65): 53129-53154. DOI: 10.1039/C5RA08321D. |
5 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120. DOI: 10.1002/anie.201703772. |
6 | LIU Q N, HU Z, LI W J, et al. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries?[J]. Energy & Environmental Science, 2021, 14(1): 158-179. DOI: 10.1039/D0EE02997A. |
7 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. DOI: 10.1016/0378-4363(80)90214-4. |
8 | PALANIYANDY N. Recent developments on layered 3d-transtition metal oxide cathode materials for sodium-ion batteries[J]. Current Opinion in Electrochemistry, 2020, 21: 319-326. DOI: 10.1016/j.coelec.2020.03.023. |
9 | CHEN M Z, LIU Q N, WANG S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): DOI: 10.1002/aenm.201803609. |
10 | YOU Y, XIN S, ASL H Y, et al. Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries[J]. Chem, 2018, 4(9): 2124-2139. DOI: 10.1016/j.chempr.2018.05.018. |
11 | ZHAO Y S, LIU Q, ZHAO X H, et al. Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies[J]. Materials Today, 2023, 62: 271-295. DOI: 10.1016/j.mattod.2022.11.024. |
18 | DANG R B, LI Q, CHEN M M, et al. CuO-Coated and Cu2+-doped co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(1): 314-321. DOI: 10.1039/C8CP06248J. |
19 | LIU Y H, FANG X, ZHANG A Y, et al. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification[J]. Nano Energy, 2016, 27: 27-34. DOI: 10.1016/j.nanoen.2016.06.026. |
20 | MATHIYALAGAN K, SHIN D, LEE Y C. Difficulties, strategies, and recent research and development of layered sodium transition metal oxide cathode materials for high-energy sodium-ion batteries[J]. Journal of Energy Chemistry, 2024, 90: 40-57. DOI: 10.1016/j.jechem.2023.10.023. |
21 | LI W, YAO Z J, ZHANG S Z, et al. Exploring the stability effect of the co-substituted P2-Na0.67[Mn0.67Ni0.33]O2 cathode for liquid- and solid-state sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41477-41484. DOI: 10.1021/acsami.0c11375. |
22 | YANG T T, HUANG Y L, ZHANG J, et al. Insights into Ti doping for stabilizing the Na2/3Fe1/3Mn2/3O2 cathode in sodium ion battery[J]. Journal of Energy Chemistry, 2022, 73: 542-548. DOI: 10.1016/j.jechem.2022.06.016. |
23 | ZHENG X B, LI P, ZHU H J, et al. New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries[J]. Energy Storage Materials, 2018, 15: 257-265. DOI: 10.1016/j.ensm.2018.05.001. |
24 | MAO Q J, YU Y, WANG J K, et al. Mitigating the P2-O2 transition and Na+/vacancy ordering in Na2/3Ni1/3Mn2/3O2 by anion/cation dual-doping for fast and stable Na+ insertion/extraction[J]. Journal of Materials Chemistry A, 2021, 9(17): 10803-10811. DOI: 10.1039/D1TA01433A. |
25 | CHEN X L, GUO W Y, LI R, et al. Structure, electrochemical, and transport properties of Li- and F-modified P2-Na2/3Ni1/3Mn2/3O2 cathode materials for Na-ion batteries[J]. Coatings, 2023, 13(3): DOI: 10.3390/coatings13030626. |
26 | LIU K, TAN S S, MOON J, et al. Insights into the enhanced cycle and rate performances of the F-substituted P2-type oxide cathodes for sodium-ion batteries[J]. Advanced Energy Materials, 2020, 10(19): DOI: 10.1002/aenm.202000135. |
27 | CUI X L, WANG S M, YE X S, et al. Insights into the improved cycle and rate performance by ex-situ F and in situ Mg dual doping of layered oxide cathodes for sodium-ion batteries[J]. Energy Storage Materials, 2022, 45: 1153-1164. DOI: 10.1016/j.ensm.2021.11.016. |
28 | ZHANG F P, LIAO J H, XU L, et al. Stabilizing P2-type Ni-Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40695-40704. DOI: 10.1021/acsami.1c12062. |
29 | KONG W J, WANG H B, SUN L M, et al. Understanding the synergic roles of MgO coating on the cycling and rate performance of Na0.67Mn0.5Fe0.5O2 cathode[J]. Applied Surface Science, 2019, 497: DOI: 10.1016/j.apsusc.2019.143814. |
30 | ZHOU D, NING D, WANG J, et al. Clarification of underneath capacity loss for O3 - type Ni, co free layered cathodes at high voltage for sodium ion batteries[J]. Journal of Energy Chemistry, 2023, 77: 479-486. DOI: 10.1016/j.jechem.2022.11.031. |
31 | LIU J, ZHOU J K, ZHAO Z J, et al. Deciphering the formation process and electrochemical behavior of novel P2/O3 biphasic layered cathode with long cycle life for sodium-ion batteries[J]. Journal of Power Sources, 2023, 560: DOI: 10.1016/j.jpowsour.2023.232686. |
[1] | Silin LIU, Xiaoling CAO, Peilu ZHANG, Ziyu LENG. Determination of the kinetic parameters of fatty acid phase-change materials based on the T-history method [J]. Energy Storage Science and Technology, 2024, 13(8): 2634-2648. |
[2] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[3] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[4] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[5] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[6] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[7] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[8] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[9] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[10] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[11] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[12] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[13] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[14] | Jinping LIU, Bowei PU, Zheyi ZOU, Mingqing LI, Yuqing DING, Yuan REN, Yaqiao LUO, Jie LI, Yajie LI, Da WANG, Bing HE, Siqi SHI. Investigating thermodynamic and kinetic properties of ionic conductors via Monte Carlo simulation [J]. Energy Storage Science and Technology, 2022, 11(3): 878-896. |
[15] | Jun ZHANG, Fengxia ZHAO, Zhao DU, Kang YANG, Yuanji LI, Xiaohu YANG. Influence of tank shape on heat storage performance: A numerical study [J]. Energy Storage Science and Technology, 2022, 11(11): 3674-3680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||