Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 388-405.doi: 10.19799/j.cnki.2095-4239.2024.1215
Previous Articles Next Articles
Junfeng HAO1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Qiangfu SUN1, Xinxin ZHANG1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xuejie HUANG1,2(
)
Received:
2024-12-20
Revised:
2024-12-24
Online:
2025-01-28
Published:
2025-02-25
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
CLC Number:
Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024)[J]. Energy Storage Science and Technology, 2025, 14(1): 388-405.
1 | CHEN H, YUAN H H, DAI Z Q, et al. Surface gradient Ni-rich cathode for Li-ion batteries[J]. Advanced Materials, 2024, 36(33): 2401052. DOI: 10.1002/adma.202401052. |
2 | CHEN J H, FENG S Y, DENG J H, et al. Application of precursor with ultra-small particle size and uniform particle distribution for ultra-high nickel single-crystal cathode materials by coprecipitation method[J]. Journal of Colloid and Interface Science, 2025, 679: 798-810. DOI: 10.1016/j.jcis.2024.10.025. |
3 | KONG N J, HA J H, HWANG Y J, et al. Mitigating hydrogen gas evolution in high nickel cathodes using single-crystalline NCM particles[J]. Journal of Materials Chemistry A, 2024, 12(40): 27393-27399. DOI: 10.1039/D4TA04615C. |
4 | LI Z, YOU Y, LIU Y, et al. Analyzing the mechanism of performance improvement in LiNi0.8Co0.1Mn0.1O2 through coating with LiNbO3 fast ion conductor[J]. Ceramics International, 2024, 50(17): 30493-30503. DOI: 10.1016/j.ceramint.2024.05.347. |
5 | AN L J, SWALLOW J E N, CONG P X, et al. Distinguishing bulk redox from near-surface degradation in lithium nickel oxide cathodes[J]. Energy & Environmental Science, 2024, 17(21): 8379-8391. DOI: 10.1039/d4ee02398f. |
6 | KARGER L, KORNEYCHUK S, SICOLO S, et al. Decoupling substitution effects from point defects in layered Ni-rich oxide cathode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2402444. DOI: 10.1002/adfm. 202402444. |
7 | LIN L L, ZHANG L H, FU Z Q, et al. Unraveling mechanism for microstructure engineering toward high-capacity nickel-rich cathode materials[J]. Advanced Materials, 2024, 36(36): e2406175. DOI: 10.1002/adma.202406175. |
8 | LIU M L, YING Y R, LIU J W, et al. Catalytic strategies enabled rapid formation of homogeneous and mechanically robust inorganic-rich cathode electrolyte interface for high-rate and high-stability lithium-ion batteries[J]. Advanced Energy Materials, 2024: 2403696. DOI: 10.1002/aenm.202403696. |
9 | MA K H, HE Y T, ZHAO X Y, et al. Lithium-ion battery silicon Anodes: Surface engineering with novel additives for enhanced ion and electron transport[J]. Chemical Engineering Journal, 2024, 496: 153846. DOI: 10.1016/j.cej.2024.153846. |
10 | CAO L, CHU M J, LI Y, et al. In situ-constructed multifunctional composite anode with ultralong-life toward advanced lithium-metal batteries[J]. Advanced Materials, 2024, 36(41): e2406034. DOI: 10.1002/adma.202406034. |
11 | FANG C D, HUANG Y, SUN Y F, et al. Revealing and reconstructing the 3D Li-ion transportation network for superionic poly(ethylene) oxide conductor[J]. Nature Communications, 2024, 15(1): 6781. DOI: 10.1038/s41467-024-51191-2. |
12 | DUAN P H, YU J L, LIU Q S, et al. Dynamic anion enables self-healing single-ion conductor polymer electrolyte for lithium-metal batteries[J]. Advanced Functional Materials, 2024, 34(37): 2402065. DOI: 10.1002/adfm.202402065. |
13 | LI K, WANG J F, SHEN Q Y, et al. Interfacial design strategy for polymeric lithium metal batteries with superfast charge-transfer kinetics[J]. Advanced Energy Materials, 2024, 14(27): 2400956. DOI: 10.1002/aenm.202400956. |
14 | LYU W, FU H W, RAO A M, et al. Permeable void-free interface for all-solid-state alkali-ion polymer batteries[J]. Science Advances, 2024, 10(42): eadr9602. DOI: 10.1126/sciadv.adr9602. |
15 | LIU H, LIAO Y Q, LEUNG C, et al. Ring-opening polymerization reconfigures polyacrylonitrile network for ultra stable solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024: 2402795. DOI: 10.1002/aenm.202402795. |
16 | AN H W, LI M L, LIU Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh·kg-1[J]. Nature Communications, 2024, 15(1): 9150. DOI: 10.1038/s41467-024-53094-8. |
17 | BOARETTO N, MEABE L, LINDBERG S, et al. Hybrid ceramic polymer electrolytes enabling long cycling in practical 1 Ah-class high-voltage solid-state batteries with Li metal anode[J]. Advanced Functional Materials, 2024: 2404564. DOI: 10.1002/adfm.202404564. |
18 | FENG G, MA Q Y, LUO D, et al. Designing cooperative ion transport pathway in ultra-thin solid-state electrolytes toward practical lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202413306. DOI: 10.1002/anie. 202413306. |
19 | HE Y B, WANG C Y, ZHANG R, et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries[J]. Nature Communications, 2024, 15(1): 10015. DOI: 10.1038/s41467-024-53869-z. |
20 | MA Y T, QIU Y, YANG K, et al. Competitive Li-ion coordination for constructing a three-dimensional transport network to achieve ultra-high ionic conductivity of a composite solid-state electrolyte[J]. Energy & Environmental Science, 2024, 17(21): 8274-8283. DOI: 10.1039/D4EE03134B. |
21 | HE Y B, WANG C Y, LIN R Q, et al. A self-healing, flowable, yet solid electrolyte suppresses Li-metal morphological instabilities[J]. Advanced Materials, 2024, 36(49): e2406315. DOI: 10.1002/adma.202406315. |
22 | ZHANG N N, HE Q S, ZHANG L, et al. Homogeneous fluorine doping toward highly conductive and stable Li10GeP2S12 solid electrolyte for all-solid-state lithium batteries[J]. Advanced Materials, 2024: 2408903. DOI: 10.1002/adma.202408903. |
23 | LI D Y, YU D F, ZHANG G W, et al. High configuration entropy promises electrochemical stability of chloride electrolytes for high-energy, long-life all-solid-state batteries[J]. Angewandte Chemie (International Ed), 2024: e202419735. DOI: 10.1002/anie. 202419735. |
24 | SCHEIBER T, GADERMAIER B, FINŠGAR M, et al. Charge carrier dynamics of the mixed conducting interphase in all-solid-state batteries: Lithiated Li1.3Al0.3Ti1.7(PO4)3 as a case study[J]. Advanced Functional Materials, 2024, 34(45): 2404562. DOI: 10.1002/adfm.202404562. |
25 | LIU X X, HOU H Y, WANG Y X, et al. Building continuous Li-ion transport channels from cathode to anode in solid-state lithium-metal batteries[J]. Inorganic Chemistry Frontiers, 2024, 11(21): 7451-7463. DOI: 10.1039/D4QI01803F. |
26 | FENG W L, ZHAO Y F, XIA Y Y. Solid interfaces for the Garnet electrolytes[J]. Advanced Materials, 2024, 36(15): e2306111. DOI: 10.1002/adma.202306111. |
27 | CHEN L L, XIAO B W, CHEN W B, et al. Ultra-high rate performance of single-crystalline NMC cathodes enabled by a TEP-based electrolyte[J]. Nano Energy, 2024, 131: 110276. DOI: 10.1016/j.nanoen.2024.110276. |
28 | FENG X N, XIE Y C, WU Q, et al. Triple salts electrolyte for high cyclability and high capability in practical safe nickel-rich batteries[J]. Nano Energy, 2024, 132: 110357. DOI: 10.1016/j.nanoen.2024.110357. |
29 | [CHEN T L, LIU M T, FAN X Y, et al. Nonflammable sulfone-based electrolytes with mechanically and thermally stable interfaces enabling LiNi0.5Mn1.5O4 to operate at high temperature[J]. ACS Energy Letters, 2024, 9(11): 5452-5460. DOI: 10.1021/acsenergylett.4c02458. |
30 | QIN M S, ZENG Z Q, WU Q, et al. Microsolvating competition in Li+ solvation structure affording PC-based electrolyte with fast kinetics for lithium-ion batteries[J]. Advanced Functional Materials, 2024, 34(41): 2406357. DOI: 10.1002/adfm. 202406357. |
31 | WANG Y K, ZHAO Y T, ZHANG S, et al. Monofluorinated phosphate with unique P—F bond for nonflammable and long-life lithium-ion batteries[J]. Angewandte Chemie (International Ed), 2024, 63(52): e202412108. DOI: 10.1002/anie.202412108. |
32 | MA Z H, RUAN D G, WANG D Z, et al. Selective methylation of cyclic ether towards highly elastic solid electrolyte interphase for silicon-based anodes[J]. Angewandte Chemie (International Ed), 2024: e202414859. DOI: 10.1002/anie.202414859. |
33 | LU Z Y, YANG H J, SUN J M, et al. Conformational isomerism breaks the electrolyte solubility limit and stabilizes 4.9 V Ni-rich layered cathodes[J]. Nature Communications, 2024, 15(1): 9108. DOI: 10.1038/s41467-024-53570-1. |
34 | TAN S, BORODIN O, WANG N, et al. Synergistic anion and solvent-derived interphases enable lithium-ion batteries under extreme conditions[J]. Journal of the American Chemical Society, 2024, 146(44): 30104-30116. DOI: 10.1021/jacs.4c07806. |
35 | ADAMO J B, MANTHIRAM A. Electrolyte strategies to minimize surface reactivity for improved reversibility of the H2-H3 phase transition[J]. Journal of Materials Chemistry A, 2024, 12(42): 28818-28829. DOI: 10.1039/D4TA05216A. |
36 | CORA S, VAUGHEY J T, SA N Y. Binary cation matrix electrolyte and its effect on solid electrolyte interphase suppression and evolution of Si anode[J]. ACS Applied Materials & Interfaces, 2024, 16(30): 39277-39286. DOI: 10.1021/acsami.4c05194. |
37 | HE W, YEDDALA M, RYNEARSON L, et al. Electrolyte design for NMC811||SiOx-gr lithium-ion batteries with excellent low-temperature and high-rate performance[J]. Journal of the Electrochemical Society, 2024, 171(8): 080507. DOI: 10.1149/1945-7111/ad6934. |
38 | ARIFIADI A, DEMELASH F, BRAKE T, et al. Elucidating the limit of lithium difluorophosphate electrolyte additive for high-voltage Li/Mn-rich layered oxide || graphite Li ion batteries[J]. Energy & Environmental Materials, 2024: 12835. DOI: 10.1002/eem2.12835. |
39 | CUI Z H, LIU C, MANTHIRAM A. Enabling stable operation of lithium-ion batteries under fast-operating conditions by tuning the electrolyte chemistry[J]. Advanced Materials, 2024: 2409272. DOI: 10.1002/adma.202409272. |
40 | PFEIFFER F, GRIGGIO A, WEILING M, et al. Tracing the cross-talk phenomenon of vinylethylene carbonate to unveil its counterintuitive influence as an electrolyte additive on high-voltage lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(39): 2402187. DOI: 10.1002/aenm.202402187. |
41 | WÖLKE C, BENAYAD A, LAI T L, et al. Single versus blended electrolyte additives: Impact of a sulfur-based electrolyte additive on electrode cross-talk and electrochemical performance of LiNiO2||graphite cells[J]. Advanced Energy Materials, 2024: 2402152. DOI: 10.1002/aenm.202402152. |
42 | LI Y N, WEN B, LI N, et al. Electrolyte engineering to construct robust interphase with high ionic conductivity for wide temperature range lithium metal batteries[J]. Angewandte Chemie (International Ed), 2024: e202414636. DOI: 10.1002/anie.202414636. |
43 | CUI L F, ZHANG S, JU J W, et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries[J]. Nature Energy, 2024, 9: 1084-1094. DOI: 10.1038/s41560-024-01596-6. |
44 | HWANG T, BAE J H, LEE S R, et al. Oxygen substitution to enhance chemo-mechanical stability at the cathode-sulfide electrolyte interface in all-solid-state batteries[J]. ACS Nano, 2024, 18(34): 23320-23330. DOI: 10.1021/acsnano.4c06345. |
45 | KONG X K, GU R, JIN Z Z, et al. Maximizing interface stability in all-solid-state lithium batteries through entropy stabilization and fast kinetics[J]. Nature Communications, 2024, 15(1): 7247. DOI: 10.1038/s41467-024-51123-0. |
46 | KWON P J, JUAREZ-YESCAS C, JEONG H, et al. Chemo-electrochemical evolution of cathode-solid electrolyte interface in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(10): 4746-4752. DOI: 10.1021/acsenergylett.4c02062. |
47 | JIANG Y, WU X, LU G Z, et al. High-areal-capacity all-solid-state lithium batteries enabled by electronically conductive Li-deficient LiNiO2 cathode[J]. ACS Energy Letters, 2024, 9(11): 5529-5538. DOI: 10.1021/acsenergylett.4c01457. |
48 | HONG S B, JANG Y R, KIM H, et al. Wet-processable binder in composite cathode for high energy density all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(35): 2400802. DOI: 10.1002/aenm.202400802. |
49 | KIM Y J, HOANG T D, HAN S C, et al. Exploring optimal cathode composite design for high-performance all-solid-state batteries[J]. Energy Storage Materials, 2024, 71: 103607. DOI: 10.1016/j.ensm.2024.103607. |
50 | MEI P, ZHANG Y, AI B, et al. Versatile peroxide route-based kinetics-controlled coating method to construct uniform alkali metal-containing fast ionic conductor nanoshells[J]. Journal of the American Chemical Society, 2024, 146(42): 28677-28684. DOI: 10.1021/jacs.4c04519. |
51 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(31): 2400985. DOI: 10.1002/aenm.202400985. |
52 | KIM S, KIM M, KU M J, et al. Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries[J]. ACS Nano, 2024, 18(36): 25096-25106. DOI: 10.1021/acsnano.4c06720. |
53 | LIU Y C, LU Y, ZHANG Z L, et al. High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity[J]. Journal of Energy Chemistry, 2025, 101: 795-807. DOI: 10.1016/j.jechem. 2024. 10.022. |
54 | LIU H, WANG Y, CHEN L Q, et al. High-capacity, long-life sulfide all-solid-state batteries with single-crystal Ni-rich layered oxide cathodes[J]. Advanced Functional Materials, 2024, 34(26): 2315701. DOI: 10.1002/adfm.202315701. |
55 | CHEN Y, GAO X, ZHEN Z, et al. The construction of multifunctional solid electrolyte interlayers for stabilizing Li6PS5Cl-based all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(23): 9288-9302. DOI: 10.1039/D4EE03289F. |
56 | CHEN S W, CAO Q B, TANG B, et al. Chemomechanical pairing of alloy anodes and solid-state electrolytes[J]. ACS Energy Letters, 2024, 9(11): 5373-5382. DOI: 10.1021/acsenergylett.4c01983. |
57 | WANG Z X, LU Y, ZHAO C Z, et al. Suppressing Li voids in all-solid-state lithium metal batteries through Li diffusion regulation[J]. Joule, 2024, 8(10): 2794-2810. DOI: 10.1016/j.joule. 2024. 07.007. |
58 | LIU H, LI D B, DONG C X, et al. Generalized interphase design for stabilized Li/inorganic electrolyte interfaces[J]. Advanced Energy Materials, 2024, 14(38): 2402064. DOI: 10.1002/aenm. 202402064. |
59 | WANG Z Y, ZHAO C Z, YAO N, et al. The regulation of solid electrolyte interphase on composite lithium anodes in solid-state batteries[J]. Angewandte Chemie (International Ed), 2024: e202414524. DOI: 10.1002/anie.202414524. |
60 | WU X, PAN H, ZHANG M H, et al. Integrating lithium sulfide as a single ionic conductor interphase for stable all-solid-state lithium-sulfur batteries[J]. Advanced Science, 2024, 11(25): e2308604. DOI: 10.1002/advs.202308604. |
61 | GÖTZ R, PUGACHEVA E, AHALIABADEH Z, et al. Characterization of the lithium/solid electrolyte interface in the presence of nanometer-thin TiOx layers for all-solid-state batteries[J]. ChemSusChem, 2024, 17(22): e202401026. DOI: 10.1002/cssc.202401026. |
62 | ZHAO Y, LI L B, ZHOU D, et al. Add an extra layer to bring lithium-ions out of disorder for longevity of the solid full batteries[J]. Advanced Functional Materials, 2024, 34(45): 2408379. DOI: 10.1002/adfm.202408379. |
63 | JUN S, LEE G, SONG Y B, et al. Interlayer engineering and prelithiation: Empowering Si anodes for low-pressure-operating all-solid-state batteries[J]. Small, 2024, 20(25): e2309437. DOI: 10.1002/smll.202309437. |
64 | JI W J, LUO B, WANG Q, et al. Interface engineering enabling thin lithium metal electrodes down to 0.78 μm for garnet-type solid-state batteries[J]. Nature Communications, 2024, 15(1): 9920. DOI: 10.1038/s41467-024-54234-w. |
65 | ZHANG H, DENG J H, XU H T, et al. Molecule crowding strategy in polymer electrolytes inducing stable interfaces for all-solid-state lithium batteries[J]. Advanced Materials, 2024, 36(31): e2403848. DOI: 10.1002/adma.202403848. |
66 | SOHN Y, OH J, LEE J, et al. Dual-seed strategy for high-performance anode-less all-solid-state batteries[J]. Advanced Materials, 2024, 36(47): 2407443. DOI: 10.1002/adma. 202407443. |
67 | OH J, CHOI S H, KIM H, et al. Lithio-amphiphilic nanobilayer for high energy density anode-less all-solid-state batteries operating under low stack pressure[J]. Energy & Environmental Science, 2024, 17(20): 7932-7943. DOI: 10.1039/D4EE03130J. |
68 | JO Y H, LEE Y J, KIM D W. Exploring the optimal binder content in composite electrodes for sulfide-based all-solid-state lithium-ion batteries[J]. Journal of the Electrochemical Society, 2024, 171(10): 100525. DOI: 10.1149/1945-7111/ad851f. |
69 | LIAO M, XU Y B, RAHMAN M M, et al. Hybrid polymer network cathode-enabled soluble-polysulfide-free lithium-sulfur batteries[J]. Nature Sustainability, 2024, 7: 1709-1718. DOI: 10.1038/s41893-024-01453-0. |
70 | ZHONG H Y, SU Y, MA R Q, et al. Nano-scale interface engineering of sulfur cathode to enable high-performance all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2024, 34(30): 2315925. DOI: 10.1002/adfm.202315925. |
71 | KONG D C, ZHU Q Y, GUAN D H, et al. A piezocatalysis strategy to enable efficient redox in solid-state battery[J]. Angewandte Chemie (International Ed), 2024: e202418174. DOI: 10.1002/anie.202418174. |
72 | KANG S H, LIM W G, XU L L, et al. Approaching high rate all-solid-State lithium-sulfur batteries via promoted sulfur conversion with nickel oxide nanoparticle electrocatalyst[J]. Chemical Engineering Journal, 2024, 490: 151489. DOI: 10.1016/j.cej. 2024.151489. |
73 | SU Z K, LI G, ZHANG J J. Coaxial nanofiber binders integrating thin and robust sulfide solid electrolytes for high-performance all-solid-state lithium battery[J]. Advanced Functional Materials, 2024: 2415409. DOI: 10.1002/adfm.202415409. |
74 | ROY I S, TAPONEN H, VÄLIKANGAS J, et al. Implementing substrate treatments to enhance adhesion and facilitate Cyrene as an NMP alternative for sustainable printed nickel-manganese-cobalt-based battery cathodes[J]. Energy Technology, 2024, 12(11): 2400638. DOI: 10.1002/ente.202400638. |
75 | ELSAYED A, VOGES K, MICHALOWSKI P, et al. Towards a scalable production of β-Li3PS4-based all-solid-state batteries: Optimizing pressing parameters of the tape-casted solid electrolyte and composite cathode films[J]. Journal of Power Sources, 2024, 613: 234772. DOI: 10.1016/j.jpowsour. 2024. 234772. |
76 | XIAO C L, WANG H G, USISKIN R, et al. Unification of insertion and supercapacitive storage concepts: Storage profiles in titania[J]. Science, 2024, 386(6720): 407-413. DOI: 10.1126/science.adi5700. |
77 | JENKINS M, DEWAR D, LAGNONI M, et al. A high capacity gas diffusion electrode for Li-O2 batteries[J]. Advanced Materials, 2024: 2405715. DOI: 10.1002/adma.202405715. |
78 | SONG Y J, WANG J, LIANG L H. Thickness effect on the mechanical performance of cathodes in lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111417. DOI: 10.1016/j.est. 2024.111417. |
79 | KATSUYAMA Y, YANG Z Y, THIEL M, et al. A rapid, scalable laser-scribing process to prepare Si/graphene composites for lithium-ion batteries[J]. Small, 2024, 20(28): e2305921. DOI: 10. 1002/smll.202305921. |
80 | MA L, FANG Y Y, YANG N, et al. Stabilizing the bulk-phase and solid electrolyte interphase of silicon microparticle anode by constructing gradient-hierarchically ordered conductive networks[J]. Advanced Materials, 2024, 36(30): e2404360. DOI: 10.1002/adma.202404360. |
81 | LIU Z T, CHIEN P H, WANG S, et al. Tuning collective anion motion enables superionic conductivity in solid-state halide electrolytes[J]. Nature Chemistry, 2024, 16(10): 1584-1591. DOI: 10.1038/s41557-024-01634-6. |
82 | WANG Y, WANG J J, ZHANG W W, et al. Promising VO2(B)/rGO heterojunction cathode for building high-capacity and long-lifespan Ca-ion batteries[J]. Advanced Functional Materials, 2024, 34(27): 2314761. DOI: 10.1002/adfm.202314761. |
83 | CSERNICA P M, MCCOLL K, BUSSE G M, et al. Substantial oxygen loss and chemical expansion in lithium-rich layered oxides at moderate delithiation[J]. Nature Materials, 2024. DOI: 10.1038/s41563-024-02032-6. |
84 | CUI Z H, ZUO P, GUO Z Z, et al. Formation and detriments of residual alkaline compounds on high-nickel layered oxide cathodes[J]. Advanced Materials, 2024, 36(33): 2402420. DOI: 10.1002/adma.202402420. |
85 | LI X Y, CHEN Y T, LU Y Y, et al. Spatial-dependent coupling of electrochemistry, mass transport, and stress in silicon-graphite composite electrodes for lithium-ion batteries[J]. Advanced Functional Materials, 2024: 2413560. DOI: 10.1002/adfm. 202413560. |
86 | LEE S, PARK H, KIM J Y, et al. Unveiling crystal orientation-dependent interface property in composite cathodes for solid-state batteries by in situ microscopic probe[J]. Nature Communications, 2024, 15(1): 7947. DOI: 10.1038/s41467-024-52226-4. |
87 | CHEN Y, HUANG L, ZHOU D L, et al. Elucidating and minimizing the space-charge layer effect between NCM cathode and Li6PS5Cl for sulfide-based solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304443. DOI: 10. 1002/aenm.202304443. |
88 | LANNELONGUE P, LINDBERG S, GONZALO E, et al. Stable cycling of halide solid state electrolyte enabled by a dynamic layered solid electrolyte interphase between Li metal and Li3YCl4Br2[J]. Energy Storage Materials, 2024, 72: 103733. DOI: 10.1016/j.ensm.2024.103733. |
89 | ALT C D, MÜLLER N U C B, RIEGGER L M, et al. Quantifying multiphase SEI growth in sulfide solid electrolytes[J]. Joule, 2024, 8(10): 2755-2776. DOI: 10.1016/j.joule.2024.07.006. |
90 | GUO W D, SUN Z C, GUO J, et al. Digital twin-assisted degradation diagnosis and quantification of NMC battery aging effects during fast charging[J]. Advanced Energy Materials, 2024: 2401644. DOI: 10.1002/aenm.202401644. |
91 | LIU C L, ROTERS F, RAABE D. Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries[J]. Nature Communications, 2024, 15: 7970. DOI: 10.1038/s41467-024-52123-w. |
92 | WANG C H, WANG S W, LING C. Chemical roadmap toward stable electrolyte-electrode interfaces in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(11): 5349-5359. DOI: 10.1021/acsenergylett.4c01618. |
93 | AKTEKIN B, KATAEV E, RIEGGER L M, et al. operando photoelectron spectroscopy analysis of Li6PS5Cl electrochemical decomposition reactions in solid-state batteries[J]. ACS Energy Letters, 2024, 9(7): 3492-3500. DOI: 10.1021/acsenergylett.4c01072. |
94 | ZHANG Z J, XIAO X, YAN A J, et al. Breaking the capacity bottleneck of lithium-oxygen batteries through reconceptualizing transport and nucleation kinetics[J]. Nature Communications, 2024, 15(1): 9952. DOI: 10.1038/s41467-024-54366-z. |
95 | MAITY A, SVIRINOVSKY-ARBELI A, BUGANIM Y, et al. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy[J]. Nature Communications, 2024, 15(1): 9956. DOI: 10.1038/s41467-024-54315-w. |
96 | KURIHARA K, NAKAMIZO S, YAMAMOTO S, et al. Li concentration change around Cu/LiPON interface measured by TOF-ERDA[J]. Journal of Solid State Electrochemistry, 2024, 28(12): 4451-4456. DOI: 10.1007/s10008-024-05865-y. |
97 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024, 36(31): e2402024. DOI: 10.1002/adma.202402024. |
98 | JEON T, JUNG S C. Enhancing lithium conductivity using high-valence cations in cubic spinel halide solid electrolytes[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 47443-47453. DOI: 10.1021/acsami.4c07798. |
99 | YU Y R, HUANG Y Y, XU Z B, et al. A high-voltage solid state electrolyte based on spinel-like chloride made of low-cost and abundant resources[J]. Advanced Functional Materials, 2024, 34(24): 2315512. DOI: 10.1002/adfm.202315512. |
100 | LU Z, HAO S, AYKOL M, et al. Lithium transport in crystalline and amorphous cathode coatings for Li-ion batteries[J]. Chemistry of Materials, 2024, 36(20): 10205-10215. |
[1] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[2] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
[3] | Hong ZHOU, Hailong YU, Liping WANG, Xuejie HUANG. Frontier monitoring and topic analysis of lithium batteries based on BERTopic model [J]. Energy Storage Science and Technology, 2025, 14(1): 406-416. |
[4] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[5] | Guobing ZHOU, Shenzhen XU. Progress of theoretical studies on the formation and growth mechanisms of solid electrolyte interphase at lithium metal anodes [J]. Energy Storage Science and Technology, 2024, 13(9): 3150-3160. |
[6] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[7] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[8] | Jieyu ZHANG, Shun ZHANG, Ning LI, Fanglei ZENG, Jianning DING. Preparation and performance of a flame-retardant gel polymer electrolyte [J]. Energy Storage Science and Technology, 2024, 13(8): 2529-2540. |
[9] | Chaofeng XU, Xiaolei HAN, Jinzhi WANG, Xiaojun WANG, Zhiming LIU, Jingwen ZHAO. Crystalline zinc-ion solid-state electrolytes based on weak coordination environments [J]. Energy Storage Science and Technology, 2024, 13(8): 2519-2528. |
[10] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[11] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[12] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[13] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[14] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[15] | Zongxun LI, Qiuqiu LYU, Haoyu ZHAO, Jianyu HE, Yang LIU, Zaihong SUN, Kaihua SUN, Tenglong ZHU. Research of GDC barrier layer applications by hydrothermal insitu growth in industrial-sized SOFC [J]. Energy Storage Science and Technology, 2024, 13(7): 2407-2413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||