1 |
KHAN F M N U, RASUL M G, SAYEM A S M, et al. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2023, 71: 108033. DOI: 10.1016/j.est. 2023.108033.
|
2 |
GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond-a 2030 vision[J]. Nature Communications, 2020, 11(1): 6279. DOI: 10.1038/s41467-020-19991-4.
|
3 |
KUMAR THAKUR A, SATHYAMURTHY R, VELRAJ R, et al. A state-of-the art review on advancing battery thermal management systems for fast-charging[J]. Applied Thermal Engineering, 2023, 226: 120303. DOI: 10.1016/j.applthermaleng.2023.120303.
|
4 |
LV Y F, GENG X W, LUO W M, et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety[J]. Journal of Energy Storage, 2023, 72: 108389. DOI: 10.1016/j.est.2023.108389.
|
5 |
ZHU G R, KONG C, WANG J V, et al. A fractional-order electrochemical lithium-ion batteries model considering electrolyte polarization and aging mechanism for state of health estimation[J]. Journal of Energy Storage, 2023, 72: 108649. DOI: 10.1016/j.est.2023.108649.
|
6 |
WANG Y L, CHEN X J, LI C L, et al. Temperature prediction of lithium-ion battery based on artificial neural network model[J]. Applied Thermal Engineering, 2023, 228: 120482. DOI: 10.1016/j.applthermaleng.2023.120482.
|
7 |
ALKHEDHER M, AL TAHHAN A B, YOUSAF J, et al. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. DOI: 10.1016/j.est.2024.111172.
|
8 |
WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110015. DOI: 10.1016/j.rser. 2020.110015.
|
9 |
ZHU S, HE C N, ZHAO N Q, et al. Data-driven analysis on thermal effects and temperature changes of lithium-ion battery[J]. Journal of Power Sources, 2021, 482: 228983. DOI: 10.1016/j.jpowsour.2020.228983.
|
10 |
KIM T J, YOUN B D, KIM H J. Online-applicable temperature prediction model for EV battery pack thermal management[C]//Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise. August 4-7, 2013. Portland, Oregon, USA. American Society of Mechanical Engineers, 2013. DOI: 10.1115/detc2013-13549.
|
11 |
NAGUIB M, KOLLMEYER P, VIDAL C, et al. Accurate surface temperature estimation of lithium-ion batteries using feedforward and recurrent artificial neural networks[C]//2021 IEEE Transportation Electrification Conference & Expo (ITEC). June 21-25, 2021, Chicago, IL, USA. IEEE, 2021: 52-57. DOI: 10.1109/ITEC51675.2021.9490043.
|
12 |
PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks[J]. 30th International Conference on Machine Learning, ICML 2013, 2013(PART 3): 2347-2355.
|
13 |
YAO Q, LU D D C, LEI G. A surface temperature estimation method for lithium-ion battery using enhanced GRU-RNN[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1103-1112. DOI: 10.1109/TTE.2022.3197927.
|
14 |
QI X, HONG C F, YE T, et al. Frequency reconstruction oriented EMD-LSTM-AM based surface temperature prediction for lithium-ion battery[J]. Journal of Energy Storage, 2024, 84: 111001. DOI: 10.1016/j.est.2024.111001.
|
15 |
DAI H F, ZHU L T, ZHU J G, et al. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries[J]. Journal of Power Sources, 2015, 293: 351-365. DOI: 10.1016/j.jpowsour.2015.05.087.
|
16 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5. DOI: 10.1149/1.2113792.
|
17 |
LI Y, CHATTOPADHYAY P, RAY A, et al. Identification of the battery state-of-health parameter from input-output pairs of time series data[J]. Journal of Power Sources, 2015, 285: 235-246. DOI: 10.1016/j.jpowsour.2015.03.068.
|
18 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. DOI: 10.1142/s17935369 09000047.
|
19 |
KOLLMEYER P, Panasonic 18650PF Li-ion battery data[DB].Mendeley Data, 2018. DOI: 10.17632/wykht8y7tg.1.
|