Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2529-2540.doi: 10.19799/j.cnki.2095-4239.2024.0164
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jieyu ZHANG1(), Shun ZHANG1, Ning LI1, Fanglei ZENG1(), Jianning DING1,2,3
Received:
2024-02-29
Revised:
2024-04-25
Online:
2024-08-28
Published:
2024-08-15
Contact:
Fanglei ZENG
E-mail:zhangjieyu0828@163.com;fanglei_zeng0802@163.com
CLC Number:
Jieyu ZHANG, Shun ZHANG, Ning LI, Fanglei ZENG, Jianning DING. Preparation and performance of a flame-retardant gel polymer electrolyte[J]. Energy Storage Science and Technology, 2024, 13(8): 2529-2540.
Fig. 6
(a)—(d) Electrochemical performance diagram of the symmetric Li-Li cell with HFE-0 and HFE-0.5 electrolyte at the current density of 0.5 mA/cm2 with the capacity of 0.5 mAh/cm2: (a) The galvanostatic cycling diagrams, (b) Amplification curve of about 192 h, (c), (d) The EIS plots at different cycling times; (e)—(f) The SEM images of Li anode surface after 50 cycles: (e) HFE-0 electrolyte, (f) HFE-0.5 electrolyte"
Fig. 8
(a)—(b) Electrochemical performance diagram of the Li-S cell with HFE-0 and HFE-0.5 electrolyte at 0.1 C: (a) The cycling performance, (b) The discharge/charge curves at the 100th cycle; (c)—(d) The SEM images of Li anode surface after 50 cycles: (c) HFE-0 electrolyte, (d) HFE-0.5 electrolyte"
Fig. 9
(a)—(b) Electrochemical performance diagram of the lithium iron phosphate cell with HFE-0 and HFE-0.5 electrolyte at 0.2 C: (a) The cycling performance, (b) The discharge/charge curves at the 110th cycle; (c)—(d) The SEM images of Li anode surface after 50 cycles: (c) HFE-0 electrolyte, (d) HFE-0.5 electrolyte"
1 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI: 10.1021/ja3091438. |
2 | CHENG X B, HUANG J Q, ZHANG Q. Review—Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society, 2017, 165(1): A6058-A6072. DOI: 10.1149/2.0111801jes. |
3 | KANNAN S K, JOSEPH J, JOSEPH M G. Review and perspectives on advanced binder designs incorporating multifunctionalities for lithium-sulfur batteries[J]. Energy & Fuels, 2023, 37(9): 6302-6322. DOI: 10.1021/acs.energyfuels.3c00155. |
4 | SEH Z W, SUN Y M, ZHANG Q F, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20): 5605-5634. DOI: 10.1039/c5cs00410a. |
5 | HU B, XU J, FAN Z J, et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(10): 2203540. DOI: 10.1002/aenm.202203540. |
6 | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524. |
LI S, HUANG J G, HE G J. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. DOI: 10.19799/j.cnki.2095-4239.2023.0524. | |
7 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191. |
8 | HE F, LI K, YIN C, et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 373: 31-39. DOI: 10.1016/j.jpowsour.2017.10.095. |
9 | KONG S Z, CAI D, LI G F, et al. Hydrogen-substituted graphdiyne/graphene as an sp/sp2 hybridized carbon interlayer for lithium-sulfur batteries[J]. Nanoscale, 2021, 13(6): 3817-3826. DOI: 10.1039/d0nr07878f. |
10 | YANG Y, ZHENG G Y, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7): 3018-3032. DOI: 10.1039/C2CS35256G. |
11 | 胡策军, 杨积瑾, 王航超, 等. 锂硫电池安全性问题现状及未来发展态势[J]. 储能科学与技术, 2018, 7(6): 1082-1093. DOI: 10.12028/j.issn.2095-4239.2018.0172. |
HU C J, YANG J J, WANG H C, et al. Research progress of safe lithium sulfur batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. DOI: 10.12028/j.issn.2095-4239.2018.0172. | |
12 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12(1): 4738. DOI: 10.1038/s41467-021-24976-y. |
13 | WANG B, WANG L, ZHANG B, et al. Niobium diboride nanoparticles accelerating polysulfide conversion and directing Li2S nucleation enabled high areal capacity lithium-sulfur batteries[J]. ACS Nano, 2022, 16(3): 4947-4960. DOI: 10.1021/acsnano.2c01179. |
14 | WANG Z Y, GE H L, LIU S, et al. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy & Environmental Materials, 2023, 6(3): 12358. DOI: 10.1002/eem2.12358. |
15 | JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506. DOI: 10.1038/nmat2460. |
16 | ZHU J Y, WANG L X, GAN X M, et al. Graphene quantum dot inlaid carbon nanofibers: Revealing the edge activity for ultrahigh rate pseudocapacitive energy storage[J]. Energy Storage Materials, 2022, 47: 158-166. DOI: 10.1016/j.ensm.2022.02.015. |
17 | HUANG J Q, ZHANG Q, WEI F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials, 2015, 1: 127-145. DOI: 10.1016/j.ensm.2015.09.008. |
18 | JEONG Y C, KIM J H, NAM S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707411. DOI: 10.1002/adfm.201707411. |
19 | LI S, LUO Z, LI L, et al. Recent progress on electrolyte additives for stable lithium metal anode[J]. Energy Storage Materials, 2020, 32: 306-319. DOI: 10.1016/j.ensm.2020.07.008. |
20 | WANG D D, LIU H D, LI M Q, et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries[J]. Nano Energy, 2020, 75: 104889. DOI: 10.1016/j.nanoen.2020.104889. |
21 | LIN Z, LIANG C D. Lithium-sulfur batteries: From liquid to solid cells[J]. Journal of Materials Chemistry A, 2015, 3(3): 936-958. DOI: 10.1039/C4TA04727C. |
22 | GUO W, ZHANG W Y, SI Y B, et al. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery[J]. Nature Communications, 2021, 12(1): 3031. DOI: 10.1038/s41467-021-23155-3. |
23 | YEŞILOT S, KÜÇÜKKÖYLÜ S, MUTLU T, et al. Halogen-free polyphosphazene-based flame retardant cathode materials for Li-S batteries[J]. Energy Technology, 2021, 9(12): 2100563. DOI: 10.1002/ente.202100563. |
24 | YANG W, YANG W, SUN B, et al. Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39695-39704. DOI: 10.1021/acsami.8b14045. |
25 | ZHAO F P, LIANG J W, YU C, et al. A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries[J]. Advanced Energy Materials, 2020, 10(9): 1903422. DOI: 10.1002/aenm.201903422. |
26 | OH J, LEE H S, KIM M P, et al. A trade-off-free fluorosulfate-based flame-retardant electrolyte additive for high-energy lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(41): 21933-21940. DOI: 10.1039/D2TA05854E. |
27 | 温荣严, 高志浩, 门树林, 等. 聚偏氟乙烯基凝胶聚合物电解质的研究进展[J]. 储能科学与技术, 2021, 10(1): 40-49. DOI: 10.19799/j.cnki.2095-4239.2020.0234. |
WEN R Y, GAO Z H, MEN S L, et al. Research progress of polyvinylidene fluoride based gel polymer electrolyte[J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. DOI: 10.19799/j.cnki.2095-4239.2020.0234. | |
28 | LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Science Advances, 2018, 4(10): eaat5383. DOI: 10.1126/sciadv.aat5383. |
29 | ZHANG H M, CHEN J H, LIU J Q, et al. Gel electrolyte with flame retardant polymer stabilizing lithium metal towards lithium-sulfur battery[J]. Energy Storage Materials, 2023, 61: 102885. DOI: 10.1016/j.ensm.2023.102885. |
30 | YANG B R, PAN Y, LI T, et al. High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes[J]. Energy Storage Materials, 2024, 65: 103124. DOI: 10.1016/j.ensm.2023.103124. |
[1] | Chenqiang DU, Zhouhuan NIE, Huinan WANG, Jiwei ZHANG, Jingwei ZHANG. Construction of built-in electric field in TiO2@TiN heterojunctions toward boosting the polysulfide conversion [J]. Energy Storage Science and Technology, 2024, 13(8): 2499-2510. |
[2] | Xupeng XU, Xuming XU, Hongyan CHEN, LIANGYaru, Weixin LEI, Zengsheng MA, Guoxin CHEN, Peiling KE. Applications of in situ characterization techniques in the study of lithium-sulfur battery mechanisms [J]. Energy Storage Science and Technology, 2024, 13(4): 1239-1252. |
[3] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
[4] | Shun ZHANG, Fanglei ZENG, Ning LI, Ningyi YUAN. Study on the preparation and properties of high-flame retardant sulfur cathode [J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024. |
[5] | Liyuan SHEN, Guixin ZHANG, Zhaoling MA. Catalytic conversion performance study of O-doped NiCo2S4/CNT composites for Li polysulfides [J]. Energy Storage Science and Technology, 2023, 12(11): 3318-3329. |
[6] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[7] | Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations [J]. Energy Storage Science and Technology, 2021, 10(2): 586-597. |
[8] | Tingting ZHAI, Zhonggang HAN, Zeming YUAN, Yanghuan ZHANG. The influence of ball milling time on the microstructure and electrochemical properties of TiFe-type alloy [J]. Energy Storage Science and Technology, 2021, 10(1): 163-169. |
[9] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[10] | WU Shijia, XIAO Xiang, WANG Chao, ZHONG Guobin, LI Xin, ZHENG Chao, RUAN Dianbo. Effect of high temperature heat treatment on electrochemical properties of three-dimensional porous graphene [J]. Energy Storage Science and Technology, 2020, 9(1): 65-69. |
[11] | LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries [J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17. |
[12] | YAO Lin, ZHOU Ling, LI Shixiong, LI Xiaomin, HE Kai, HE Qingquan, ZAI Jiantao, REN Qizhi, QIAN Xuefeng. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. |
[13] | MA Yanmei. Recent research progress of metal sulfides as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 488-494. |
[14] | HU Cejun, YANG Jijin, WANG Hangchao, CHEN Yifan, ZHANG Rongrong, LIU Wen, SUN Xiaoming. Research progress of safe lithium sulfur batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1082-1093. |
[15] | ZHU JiHua, YANG Qianyun, LIU Zhiting, YANG Wei, CHEN Yao, YU Xinwei, ZHANG Qing. Synthesis and supercapacitor performance of spiro quaternary ammonium tetrafluoroborate [J]. Energy Storage Science and Technology, 2018, 7(2): 294-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||