Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2499-2510.doi: 10.19799/j.cnki.2095-4239.2024.0143
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chenqiang DU(), Zhouhuan NIE, Huinan WANG, Jiwei ZHANG, Jingwei ZHANG()
Received:
2024-02-23
Revised:
2024-03-12
Online:
2024-08-28
Published:
2024-08-15
Contact:
Jingwei ZHANG
E-mail:dcqxinyang@126.com;jwzhang@henu.edu.cn
CLC Number:
Chenqiang DU, Zhouhuan NIE, Huinan WANG, Jiwei ZHANG, Jingwei ZHANG. Construction of built-in electric field in TiO2@TiN heterojunctions toward boosting the polysulfide conversion[J]. Energy Storage Science and Technology, 2024, 13(8): 2499-2510.
Fig. 6
(a) Charge-discharge curves at 1C and (b) rate performances of S/P-TiO、S/P-TiON-1、S/P-TiON-2和S/P-TiN; CV plots of Li-S cells by using (c)S/P-TiO, (d)S/P-TiON-1, (e)S/P-TiON-2, (f)S/P-TiN, (g) their fitting curves peak current versus scan rate square root and (h) corresponding fitting results at scan rates of 0.1—0.8 mV/s"
1 | BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191. |
2 | LI T, BAI X, GULZAR U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019, 29(32): 1901730. DOI: 10.1002/adfm.201901730. |
3 | 张弘, 张阳, 赵耀, 等. 固固转化反应硫正极的研究进展[J]. 储能科学与技术, 2022, 11(6): 1919-1933. |
ZHANG H, ZHANG Y, ZHAO Y, et al. Research progress of sulfur cathode in solid-solid conversion reaction[J]. Energy Storage Science and Technology, 2022, 11(6): 1919-1933. | |
4 | YAO W Q, XU J, MA L B, et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries[J]. Advanced Materials, 2023, 35(32): e2212116. DOI: 10.1002/adma.202212116. |
5 | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. DOI: 10.19799/j.cnki.2095-4239.2019.0295. |
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. DOI: 10.19799/j.cnki.2095-4239.2019.0295. | |
6 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14(1): 6404. DOI: 10.1038/s41467-023-42109-5. |
7 | SHI H F, LV W, ZHANG C, et al. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up[J]. Advanced Functional Materials, 2018, 28(38): 1800508. DOI: 10.1002/adfm.201800508. |
8 | HUANG L, ZHOU W, CHENG S, et al. Preparation of functional groups-rich graphene oxide for high-performance lithium-sulfur batteries[J]. Materials Today Sustainability, 2023, 21: 100300. DOI: 10.1016/j.mtsust.2022.100300. |
9 | HUANG L, SHEN S H, ZHONG Y, et al. Multifunctional hyphae carbon powering lithium-sulfur batteries[J]. Advanced Materials, 2022, 34(6): DOI: 10.1002/adma.202107415. |
10 | LI J, LIU L P, WANG J X, et al. Freestanding TiO2 nanoparticle-embedded high directional carbon composite host for high-loading low-temperature lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3657-3663. DOI: 10.1021/acssuschemeng.2c06482. |
11 | QIU H L, WANG T, LV W H, et al. Three-dimensional carbon foam decorated with SnO2 as multifunctional host for lithium sulfur batteries[J]. Journal of Colloid and Interface Science, 2023, 630: 106-114. DOI: 10.1016/j.jcis.2022.10.006. |
12 | DONG X J, DENG Q, LIANG F X, et al. Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium-sulfur battery cathodes[J]. Journal of Energy Chemistry, 2023, 86: 118-134. DOI: 10.1016/j.jechem.2023.07.003. |
13 | WANG J Y, LI G R, ZHANG X M, et al. Undercoordination chemistry of sulfur electrocatalyst in lithium-sulfur batteries[J]. Advanced Materials, 2024, 36(14): DOI: 10.1002/adma.202311019. |
14 | TIAN D, SONG X Q, WANG M X, et al. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries[J]. Advanced Energy Materials, 2019, 9(46): DOI: 10.1002/aenm.201901940. |
15 | MA F, YU B, ZHANG X J, et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431: 133439. DOI: 10.1016/j.cej.2021.133439. |
16 | XU W, BI R Y, YANG M, et al. Hollow multishelled structural TiN as multi-functional catalytic host for high-performance lithium-sulfur batteries[J]. Nano Research, 2023, 16(11): 12745-12752. DOI: 10.1007/s12274-023-6144-6. |
17 | SONG Y Z, ZHAO W, KONG L, et al. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries[J]. Energy & Environmental Science, 2018, 11(9): 2620-2630. DOI: 10.1039/C8EE01402G. |
18 | ZHANG H, ONO L K, TONG G Q, et al. Long-life lithium-sulfur batteries with high areal capacity based on coaxial CNTs@TiN-TiO2 sponge[J]. Nature Communications, 2021, 12(1): 4738. DOI: 10.1038/s41467-021-24976-y. |
19 | XUE P, ZHU K P, GONG W B, et al. "One stone two birds" design for dual-functional TiO2-TiN heterostructures enabled dendrite-free and kinetics-enhanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): 2200308. DOI: 10.1002/aenm.202200308. |
20 | PU J, WANG Z H, XUE P, et al. The effect of NiO-Ni3N interfaces in in situ formed heterostructure ultrafine nanoparticles on enhanced polysulfide regulation in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 68: 762-770. DOI: 10.1016/j.jechem.2021.12.043. |
21 | LIU B T, LI H, SHI C L, et al. Multifunctional integrated VN/V2O5 heterostructure sulfur hosts for advanced lithium-sulfur batteries[J]. Nanoscale, 2022, 14(12): 4557-4565. DOI: 10.1039/d1nr08292b. |
22 | WANG X, CHEN Z, QIU S S, et al. Design of WO2.83-WN heterostructure bidirectional catalyst for high-performance lithium-sulfur batteries[J]. ACS Applied Energy Materials, 2024, 7(2): 689-696. DOI: 10.1021/acsaem.3c02715. |
23 | HU L Y, DAI C L, LIU H, et al. Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(23): 1800709. DOI: 10.1002/aenm.201800709. |
24 | ZHANG B, LUO C, DENG Y Q, et al. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(15): DOI: 10.1002/aenm.202000091. |
25 | ZHANG J P, XI W, YU F, et al. Constructing MoS2-SnS heterostructures on N-doped carbon nanosheets for enhanced catalytic conversion of polysulfides in lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 475: DOI: 10.1016/j.cej.2023.146009. |
26 | YE C, JIAO Y, JIN H Y, et al. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2018, 57(51): 16703-16707. DOI: 10.1002/anie.201810579. |
27 | ZHAO Z X, YI Z L, DUAN Y R, et al. Regulating the d-p band center of FeP/Fe2P heterostructure host with built-in electric field enabled efficient bidirectional electrocatalyst toward advanced lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 463: DOI: 10.1016/j.cej.2023.142397. |
28 | WANG A W, DU M, NI J X, et al. Enhanced and synergistic catalytic activation by photoexcitation driven S-scheme heterojunction hydrogel interface electric field[J]. Nature Communications, 2023, 14(1): 6733. DOI: 10.1038/s41467-023-42542-6. |
29 | JU L, MA Y D, TAN X, et al. Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures[J]. Journal of the American Chemical Society, 2023, 145(48): 26393-26402. DOI: 10.1021/jacs.3c10271. |
30 | WEN W, WU J M, JIANG Y Z, et al. Pseudocapacitance-enhanced Li-ion microbatteries derived by a TiN@TiO2 nanowire anode[J]. Chem, 2017, 2(3): 404-416. DOI: 10.1016/j.chempr.2017.01.004. |
31 | LIU S D, MENG X W, WANG Z Z, et al. Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing[J]. Materials Letters, 2019, 257: 126677. DOI: 10.1016/j.matlet.2019.126677. |
32 | LI B Q, ZHAO W, YANG Z, et al. A carbon-doped anatase TiO2-Based flexible silicon anode with high-performance and stability for flexible lithium-ion battery[J]. Journal of Power Sources, 2020, 466: 228339. DOI: 10.1016/j.jpowsour.2020.228339. |
33 | MURANO A, FUNABIKI H, SEKIYA T. Change in electronic state of nitrogen in oxidized titanium nitride[J]. Journal of Physics and Chemistry of Solids, 2022, 168: DOI: 10.1016/j.jpcs.2022.110817. |
34 | YANG J, WANG C D, JU H X, et al. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance[J]. Advanced Functional Materials, 2017, 27(48): DOI: 10.1002/adfm.201703864. |
35 | ZHUANG L Z, GE L, YANG Y S, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction[J]. Advanced Materials, 2017, 29(17): DOI: 10.1002/adma.201606793. |
36 | LI X B, XIONG J, GAO X M, et al. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity[J]. Journal of Hazardous Materials, 2020, 387: DOI: 10.1016/j.jhazmat.2019.121690. |
37 | LU D Z, WANG X Y, HU Y J, et al. Expediting stepwise sulfur conversion via spontaneous built-in electric field and binary sulfiphilic effect of conductive NbB2-MXene heterostructure in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(15): DOI: 10.1002/adfm.202212689. |
38 | NGUYEN T T, BALAMURUGAN J, GO H W, et al. Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries[J]. Chemical Engineering Journal, 2022, 427: DOI: 10.1016/j.cej.2021.131774. |
39 | FAN F Y, CARTER W C, CHIANG Y M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries[J]. Advanced Materials, 2015, 27(35): 5203-5209. DOI: 10.1002/adma.201501559. |
40 | ZHOU L, DANILOV D L, QIAO F, et al. Sulfur reduction reaction in lithium-sulfur batteries: Mechanisms, catalysts, and characterization[J]. Advanced Energy Materials, 2022, 12(44): DOI: 10.1002/aenm.202202094. |
41 | XUE C J, ZHANG Y H, NIE Z H, et al. High pseudocapacitive lithium-storage behaviors of amorphous titanium oxides with titanium vacancies and open channels[J]. Electrochimica Acta, 2023, 444: DOI: 10.1016/j.electacta.2023.142021. |
42 | ZHANG Y H, NIE Z H, DU C Q, et al. Ultrahigh lithiation dynamics of Li4Ti5O12 as an anode material with open diffusion channels induced by chemical presodiation[J]. Rare Metals, 2023, 42(2): 471-483. DOI: 10.1007/s12598-022-02135-6. |
[1] | Jieyu ZHANG, Shun ZHANG, Ning LI, Fanglei ZENG, Jianning DING. Preparation and performance of a flame-retardant gel polymer electrolyte [J]. Energy Storage Science and Technology, 2024, 13(8): 2529-2540. |
[2] | Xupeng XU, Xuming XU, Hongyan CHEN, LIANGYaru, Weixin LEI, Zengsheng MA, Guoxin CHEN, Peiling KE. Applications of in situ characterization techniques in the study of lithium-sulfur battery mechanisms [J]. Energy Storage Science and Technology, 2024, 13(4): 1239-1252. |
[3] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
[4] | Xianglong HUANG, Yi LI, Maowen XU. Recent advances in cathode catalysts for room-temperature Na-S batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 231-239. |
[5] | Yinchen YANG, Shanling REN, Zhihong YANG, Yunhui WANG. First principles study of two-dimensional boron antimony films as anchoring materials for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2760-2766. |
[6] | Chao TAN, Chao WANG. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. |
[7] | Shun ZHANG, Fanglei ZENG, Ning LI, Ningyi YUAN. Study on the preparation and properties of high-flame retardant sulfur cathode [J]. Energy Storage Science and Technology, 2023, 12(4): 1018-1024. |
[8] | Liyuan SHEN, Guixin ZHANG, Zhaoling MA. Catalytic conversion performance study of O-doped NiCo2S4/CNT composites for Li polysulfides [J]. Energy Storage Science and Technology, 2023, 12(11): 3318-3329. |
[9] | Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824. |
[10] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
[11] | Kang MA, Zhihao GAO, Lin LUO, Xin SONG, Zuoqiang DAI, Tian HE, Jianmin ZHANG. Research progress on lithium-sulfur battery separators for different strategies to inhibit the “shuttle effect” [J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533. |
[12] | Xiaofei WANG, Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI, Zhendong WANG. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite [J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454. |
[13] | Bin XIE, Jia'nan SUN. Development of high specific energy lithium-sulfur cell module based on mechanical simulations [J]. Energy Storage Science and Technology, 2021, 10(2): 586-597. |
[14] | YE Ge, YUAN Hong, ZHAO Chenzi, ZHU Gaolong, XU Lei, HOU Lipeng, CHENG Xinbing, HE Chuanxin, NAN Haoxiong, LIU Quanbin, HUANG Jiaqi, ZHANG Qiang. Balance between ion migration and electron transport in composite cathodes for all-solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 339-345. |
[15] | YAO Lin, ZHOU Ling, LI Shixiong, LI Xiaomin, HE Kai, HE Qingquan, ZAI Jiantao, REN Qizhi, QIAN Xuefeng. Edge-rich MoS2 nanosheets for high performance self-supporting Li-S batteries [J]. Energy Storage Science and Technology, 2019, 8(3): 523-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||