Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (8): 2511-2518.doi: 10.19799/j.cnki.2095-4239.2024.0152
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhiyong WANG(), Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN
Received:
2024-02-27
Revised:
2024-03-15
Online:
2024-08-28
Published:
2024-08-15
Contact:
Zhiyong WANG
E-mail:zywang@shinzoom.com
CLC Number:
Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518.
Table 1
Paticle distribution of Gr, Gr@PD and Gr@PAN-x"
样品 | 粒径/μm | |||||||
---|---|---|---|---|---|---|---|---|
D00 | D01 | D10 | D50 | D90 | D97 | D99 | D100 | |
Gr | 3.14 | 4.25 | 6.31 | 11.28 | 19.9 | 24.91 | 28.75 | 35.29 |
Gr@PD | 4.04 | 5.15 | 7.42 | 12.92 | 22.17 | 27.24 | 31.01 | 40.08 |
Gr@PAN-1 | 4.04 | 5.28 | 7.54 | 12.97 | 22.28 | 27.39 | 31.3 | 40.06 |
Gr@PAN-2 | 4.04 | 5.28 | 7.53 | 12.93 | 22.1 | 27.18 | 30.97 | 40.07 |
Gr@PAN-3 | 4.05 | 5.32 | 7.63 | 13.07 | 22.29 | 27.31 | 31.05 | 40.08 |
13 | CHEN X, CHEN X R, HOU T Z, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes[J]. Science Advances, 2019, 5(2): eaau7728. DOI: 10.1126/sciadv.aau7728. |
14 | CHEN M Z, ZHOU L M, WANG T, et al. Nitrogen as an anionic center/dopant for next-generation high-performance lithium/sodium-ion battery electrodes: Key scientific issues, challenges and perspectives[J]. Advanced Functional Materials, 2023, 33(20): 2214786. DOI: 10.1002/adfm.202214786. |
15 | 肖士洁. 聚丙烯腈(PAN)热稳定化反应机理及动力学研究[D]. 北京: 北京化工大学, 2012. |
XIAO S J. Mechanism and kinetics during thermal stabilization of polyacrylonitrile[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
1 | ANDERSEN H L, DJUANDHI L, MITTAL U, et al. Strategies for the analysis of graphite electrode function[J]. Advanced Energy Materials, 2021, 11(48): 2102693. DOI: 10.1002/aenm.202102693. |
2 | 丁晓博, 黄倩晖, 熊训辉. 锂离子电池快充石墨负极研究与应用[J]. 物理化学学报, 2022, 38(11): 89-104. DOI: 10.3866/PKU.WHXB202204057. |
DING X B, HUANG Q H, XIONG X H. Research and application of fast-charging graphite anodes for lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(11): 89-104. DOI: 10.3866/PKU.WHXB202204057. | |
3 | SARKAR A, SHROTRIYA P, NLEBEDIM I C. Anodic interfacial evolution in extremely fast charged lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(3): 3179-3188. DOI: 10.1021/acsaem.1c03803. |
4 | 张佳怡, 翁素婷, 王兆翔, 等. 石墨负极界面SEI膜与锂离子电池热失控[J]. 储能科学与技术, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253. |
ZHANG J Y, WENG S T, WANG Z X, et al. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. DOI: 10.19799/j.cnki.2095-4239.2023.0253. | |
5 | HE Y, JIANG L, CHEN T W, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature Nanotechnology, 2021, 16(10): 1113-1120. DOI: 10.1038/s41565-021-00947-8. |
6 | 齐仲辉, 徐有红, 刘洪波, 等. 整形和表面改性对人造石墨负极材料性能的影响[J]. 炭素技术, 2012, 31(1): 1-5. DOI: 10.14078/j.cnki.1001-3741.2012.01.001. |
QI Z H, XU Y H, LIU H B, et al. The influences of shaping and surface modification on the performance of artifical graphite anode materials[J]. Carbon Techniques, 2012, 31(1): 1-5. DOI: 10.14078/j.cnki.1001-3741.2012.01.001. | |
7 | LI S Q, WANG K, ZHANG G F, et al. Fast charging anode materials for lithium-ion batteries: Current status and perspectives[J]. Advanced Functional Materials, 2022, 32(23): 2200796. DOI: 10.1002/adfm.202200796. |
8 | LIU P C, HAO H C, CELIO H, et al. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries[J]. Advanced Materials, 2022, 34(7): e2105855. DOI: 10.1002/adma.202105855. |
9 | 卢健, 隋欣梦, 郝胜智, 等. 锂离子电池用石墨负极材料改性研究进展[J]. 表面技术, 2022, 51(8): 135-145. DOI: 10.16490/j.cnki.issn.1001-3660.2022.08.011. |
LU J, SUI X M, HAO S Z, et al. Modification of graphite anode materials for lithium-ion batteries[J]. Surface Technology, 2022, 51(8): 135-145. DOI: 10.16490/j.cnki.issn.1001-3660.2022.08.011. | |
10 | 廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. |
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777. | |
11 | FRATINI S, NIKOLKA M, SALLEO A, et al. Charge transport in high-mobility conjugated polymers and molecular semiconductors[J]. Nature Materials, 2020, 19(5): 491-502. DOI: 10.1038/s41563-020-0647-2. |
12 | GUO X G, FACCHETTI A. The journey of conducting polymers from discovery to application[J]. Nature Materials, 2020, 19(9): 922-928. DOI: 10.1038/s41563-020-0778-5. |
[1] | Yanyan KONG, Xiong ZHANG, Yabin AN, Chen LI, Xianzhong SUN, Kai WANG, Yanwei MA. Recent advances in preparation of MOF-derived porous carbon-based materials and their applications in anodes of lithium-ion capacitors [J]. Energy Storage Science and Technology, 2024, 13(8): 2665-2678. |
[2] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
[3] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[4] | Lijun FAN, Baozhou WU, Kejun CHEN. Controllable synthesis of FeS2 with different morphologies and their sodium storage performances [J]. Energy Storage Science and Technology, 2024, 13(8): 2541-2549. |
[5] | Guozheng MA, Jinwei CHEN, Xingyu XIONG, Zhenzhong YANG, Gang ZHOU, Rengzong HU. High-rate lithium storage performance of SnSb-Li4Ti5O12 composite anode for Li-ion batteries at low-temperature [J]. Energy Storage Science and Technology, 2024, 13(7): 2107-2115. |
[6] | Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376. |
[7] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[8] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[9] | Dan LI, Tie MA, Hanhao LIU, Li GUO. Carbon-coated nano-bismuth as high-rate sodium anode material [J]. Energy Storage Science and Technology, 2024, 13(6): 1775-1785. |
[10] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[11] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[12] | Yuanyuan JIANG, Fangfang TU, Fangping ZHANG, Yinglai WANG, Jiawen CAI, Donghui YANG, Yanhong LI, Jiayuan XIANG, Xinhui XIA, Jipeng FU. Study on technology and mechanism of prelithiation for high-performance lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1435-1442. |
[13] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
[14] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[15] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||