Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 231-239.doi: 10.19799/j.cnki.2095-4239.2023.0687
Previous Articles Next Articles
Xianglong HUANG(), Yi LI, Maowen XU()
Received:
2023-10-08
Revised:
2023-12-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Maowen XU
E-mail:xlhuang_uestc@163.com;xumaowen@swu.edu.cn
CLC Number:
Xianglong HUANG, Yi LI, Maowen XU. Recent advances in cathode catalysts for room-temperature Na-S batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 231-239.
Table 1
Performance summary of RT Na-S batteries using representative catalysts"
催化剂 | 催化剂含量/% | 倍率能力/(A/g)/(mAh/g) | 循环性能 | ||
---|---|---|---|---|---|
电流密度/(A/g) | 循环寿命(n) | 容量剩余/(mAh/g) | |||
Co[ | 15.7 | 8.375/240 | 0.8375 | 600 | 398 |
Nb2O5[ | 16.8 | 2/405 | 0.5 | 600 | 617 |
FeS2[ | 14.5 | 1/395 | 0.1 | 300 | 524 |
Fe3N[ | 11 | 16.75/650 | 8.375 | 2800 | 698.7 |
Ti3C2T x[ | — | 8.375/550.6 | 3.35 | 500 | 577 |
Y-N4[ | — | 10/516 | 5 | 1000 | 510 |
TiN-TiO2[ | — | 5/440.2 | 5 | 1000 | 257.1 |
1 | WANG Y X, LAI W H, CHOU S L, et al. Sodium-sulfur batteries: Remedies for polysulfide dissolution in room-temperature sodium-sulfur batteries[J]. Advanced Materials, 2020, 32(18): 1903952. |
2 | JIN F, WANG B, WANG J L, et al. Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries[J]. Matter, 2021, 4(6): 1768-1800. |
3 | ZHANG S P, YAO Y, YU Y. Frontiers for room-temperature sodium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 529-536. |
4 | HUANG X L, WANG Y X, CHOU S L, et al. Materials engineering for adsorption and catalysis in room-temperature Na-S batteries[J]. Energy & Environmental Science, 2021, 14(7): 3757-3795. |
5 | WU C, LAI W H, CAI X L, et al. Carbonaceous hosts for sulfur cathode in alkali-metal/S (alkali metal=lithium, sodium, potassium) batteries[J]. Small, 2021, 17(48): 2006504. |
6 | WANG Y, HUANG X L, LIU H W, et al. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries[J]. ACS Nano, 2022, 16(4): 5103-5130. |
7 | LEI Y J, LIU H W, YANG Z, et al. A review on the status and challenges of cathodes in room-temperature Na-S batteries[J]. Advanced Functional Materials, 2023, 33(11): 2212600. |
8 | WANG P Y, SUN S M, RUI X H, et al. Polar electrocatalysts for preventing polysulfide migration and accelerating redox kinetics in room-temperature sodium-sulfur batteries[J]. Small Methods, 2023, 7(6): 2201728. |
9 | HUANG X L, DOU S X, WANG Z M. Metal-based electrocatalysts for room-temperature Na-S batteries[J]. Materials Horizons, 2021, 8(11): 2870-2885. |
10 | ZHOU J H, XU S M, YANG Y E. Strategies for polysulfide immobilization in sulfur cathodes for room-temperature sodium-sulfur batteries[J]. Small, 2021, 17(32): 2100057. |
11 | ZHANG B W, SHENG T, LIU Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications, 2018, 9: 4082. |
12 | YANG H L, ZHOU S, ZHANG B W, et al. Architecting freestanding sulfur cathodes for superior room-temperature Na-S batteries[J]. Advanced Functional Materials, 2021, 31(32): 2102280. |
13 | MOU J R, LI Y J, LIU T, et al. Metal-organic frameworks-derived nitrogen-doped porous carbon nanocubes with embedded co nanoparticles as efficient sulfur immobilizers for room temperature sodium-sulfur batteries[J]. Small Methods, 2021, 5(8): 2100455. |
14 | GUO B S, DU W Y, YANG T T, et al. Nickel hollow spheres concatenated by nitrogen-doped carbon fibers for enhancing electrochemical kinetics of sodium-sulfur batteries[J]. Advanced Science, 2020, 7(4): 1902617. |
15 | ZHANG B W, SHENG T A, WANG Y X, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions[J]. Angewandte Chemie International Edition, 2019, 58(5): 1484-1488. |
16 | WANG N N, WANG Y X, BAI Z C, et al. High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy & Environmental Science, 2020, 13(2): 562-570. |
17 | YAN Z C, TIAN Q, LIANG Y R, et al. Electrochemical release of catalysts in nanoreactors for solid sulfur redox reactions in room-temperature sodium-sulfur batteries[J]. Cell Reports Physical Science, 2021, 2(8): 100539. |
18 | LIU Y P, MA S Y, ROSEBROCK M, et al. Tungsten nanoparticles accelerate polysulfides conversion: A viable route toward stable room-temperature sodium-sulfur batteries[J]. Advanced Science, 2022, 9(11): 2105544. |
19 | WANG L F, WANG H Y, ZHANG S P, et al. Manipulating the electronic structure of nickel via alloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries[J]. ACS Nano, 2021, 15(9): 15218-15228. |
20 | MA D T, LI Y L, YANG J B, et al. New strategy for polysulfide protection based on atomic layer deposition of TiO2 onto ferroelectric-encapsulated cathode: Toward ultrastable free-standing room temperature sodium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(11): 1705537. |
21 | ZHOU J H, YANG Y E, ZHANG Y C, et al. Sulfur in amorphous silica for an advanced room-temperature sodium-sulfur battery[J]. Angewandte Chemie International Edition, 2021, 60(18): 10129-10136. |
22 | SAROHA R, HEO J, LIU Y, et al. V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 431: 134205. |
23 | DU W Y, WU Y K, YANG T T, et al. Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries[J]. Chemical Engineering Journal, 2020, 379: 122359. |
24 | ZHANG H, SONG B, ZHANG W W, et al. Bidirectional tandem electrocatalysis manipulated sulfur speciation pathway for high-capacity and stable Na-S battery[J]. Angewandte Chemie International Edition, 2023, 62(6): e202217009. |
25 | ZHANG C Y, LU X, HAN X, et al. Identifying the role of the cationic geometric configuration in spinel catalysts for polysulfide conversion in sodium-sulfur batteries[J]. Journal of the American Chemical Society, 2023, 145(34): 18992-19004. |
26 | HUANG X L, ZHANG X F, ZHOU L J, et al. Orthorhombic Nb2O5 decorated carbon nanoreactors enable bidirectionally regulated redox behaviors in room-temperature Na-S batteries[J]. Advanced Science, 2023, 10(4): 2212600. |
27 | ZHANG C Y, GONG L, ZHANG C Q, et al. Sodium-sulfur batteries with unprecedented capacity, cycling stability and operation temperature range enabled by a CoFe2O4 catalytic additive under an external magnetic field[J]. Advanced Functional Materials, 2023, 33(48): 2305908. |
28 | YE X, LUO S N, LI Z Q, et al. Engineering CoMoO4 in reduced graphene oxide as superior cathode hosts for advanced room-temperature sodium-sulfur batteries[J]. Journal of Energy Chemistry, 2023, 86: 620-627. |
29 | ASLAM M K, SEYMOUR I D, KATYAL N, et al. Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na-S batteries[J]. Nature Communications, 2020, 11: 5242. |
30 | WANG Y X, LAI Y Y, CHU J, et al. Tunable electrocatalytic behavior of sodiated MoS2 active sites toward efficient sulfur redox reactions in room-temperature Na-S batteries[J]. Advanced Materials, 2021, 33(16): 2100229. |
31 | ZHANG R X, ESPOSITO A M, THORNBURG E S, et al. Conversion of co nanoparticles to CoS in metal-organic framework-derived porous carbon during cycling facilitates Na2S reactivity in a Na-S battery[J]. ACS Applied Materials & Interfaces, 2020: acsami.0c05370. |
32 | MA C S, WANG X A, LAN J Q, et al. Dynamic multistage coupling of FeS2/S enables ultrahigh reversible Na-S batteries[J]. Advanced Functional Materials, 2023, 33(5): 2211821. |
33 | WANG H M, DENG C, LI X L, et al. Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 420: 129681. |
34 | YAN Z C, XIAO J, LAI W H, et al. Nickel sulfide nanocrystals on nitrogen-doped porous carbon nanotubes with high-efficiency electrocatalysis for room-temperature sodium-sulfur batteries[J]. Nature Communications, 2019, 10: 4793. |
35 | WU Y, XU Q, HUANG L, et al. Encapsulation of sulfur in MoS2-modified metal-organic framework-derived N, O-codoped carbon host for sodium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2024, 654: 649-659. |
36 | YAN Z C, LIANG Y R, XIAO J, et al. A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries[J]. Advanced Materials, 2020, 32(8): 1906700. |
37 | QI Y R, LI Q J, WU Y K, et al. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries[J]. Nature Communications, 2021, 12: 6347. |
38 | LI Z, WANG C L, LING F X, et al. Room-temperature sodium-sulfur batteries: Rules for catalyst selection and electrode design[J]. Advanced Materials, 2022, 34(32): 2204214. |
39 | ASLAM M K, HUSSAIN T, TABASSUM H, et al. Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode[J]. Chemical Engineering Journal, 2022, 429: 132389. |
40 | LI Y, WANG X Z, SUN M H, et al. Co4N embedded nitrogen doped carbon with 2D/3D hybrid structure as sulfur host for room-temperature sodium-sulfur batteries[J]. Electrochimica Acta, 2023, 451: 142288. |
41 | YE C, JIN H Y, SHAN J Q, et al. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries[J]. Nature Communications, 2021, 12: 7195. |
42 | TANG W W, ZHONG W, WU Y K, et al. Vanadium carbide nanoparticles incorporation in carbon nanofibers for room-temperature sodium sulfur batteries: Confining, trapping, and catalyzing[J]. Chemical Engineering Journal, 2020, 395: 124978. |
43 | ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2 C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): e2200479. |
44 | HAO H C, WANG Y X, KATYAL N, et al. Molybdenum carbide electrocatalyst in situ embedded in porous nitrogen-rich carbon nanotubes promotes rapid kinetics in sodium-metal-sulfur batteries[J]. Advanced Materials, 2022, 34(26): 2106572. |
45 | MOU J R, LI Y J, OU L Q, et al. A highly-efficient electrocatalyst for room temperature sodium-sulfur batteries: Assembled nitrogen-doped hollow porous carbon spheres decorated with ultrafine α-MoC1- x nanoparticles[J]. Energy Storage Materials, 2022, 52: 111-119. |
46 | BAO W Z, WANG R H, QIAN C F, et al. Porous heteroatom-doped Ti3C2Tx MXene microspheres enable strong adsorption of sodium polysulfides for long-life room-temperature sodium-sulfur batteries[J]. ACS Nano, 2021, 15(10): 16207-16217. |
47 | JIANG Y, YU Z X, ZHOU X F, et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries[J]. Advanced Materials, 2023, 35(8): 2208873. |
48 | ZHANG B W, CAO L Y, TANG C, et al. Atomically dispersed dual-site cathode with a record high sulfur mass loading for high-performance room-temperature sodium-sulfur batteries[J]. Advanced Materials, 2023, 35(1): 2206828. |
49 | BAI R L, LIN Q S, LI X Y, et al. Toward complete transformation of sodium polysulfides by regulating the second-shell coordinating environment of atomically dispersed Fe[J]. Angewandte Chemie International Edition, 2023, 62(26): e202218165. |
50 | XIAO F P, WANG H K, XU J, et al. Generating short-chain sulfur suitable for efficient sodium-sulfur batteries via atomic copper sites on a N, O-codoped carbon composite[J]. Advanced Energy Materials, 2021, 11(26): 2100989. |
51 | LIU H W, LAI W H, LIANG Y R, et al. Sustainable S cathodes with synergic electrocatalysis for room-temperature Na-S batteries[J]. Journal of Materials Chemistry A, 2021, 9(1): 566-574. |
52 | FANG D L, GHOSH T, HUANG S Z, et al. Core-shell tandem catalysis coupled with interface engineering for high-performance room-temperature Na-S batteries[J]. Small, 2023, 19(41): 2302461. |
53 | ZHANG E H, HU X A, MENG L Z, et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries[J]. Journal of the American Chemical Society, 2022, 144(41): 18995-19007. |
54 | HUANG Z P, SONG B, ZHANG H, et al. High-capacity and stable sodium-sulfur battery enabled by confined electrocatalytic polysulfides full conversion[J]. Advanced Functional Materials, 2021, 31(17): 2100666. |
55 | GHOSH A, KUMAR A, DAS T, et al. Lewis acid-base interactions between polysulfides and boehmite enables stable room-temperature sodium-sulfur batteries[J]. Advanced Functional Materials, 2020, 30(50): 2005669. |
56 | HE J R, BHARGAV A, SU L S, et al. Intercalation-type catalyst for non-aqueous room temperature sodium-sulfur batteries[J]. Nature Communications, 2023, 14(1): 6568. |
57 | MA Q Y, ZOU H D, HE H L, et al. Enhanced conversion kinetics by constructing boron and nitrogen co-doped porous carbon with sulfurophilic and sodiophilic sites in room-temperature sodium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 474: 145954. |
58 | YUAN H, ZHANG Y W. Role of ferroelectric In2Se3 in polysulfide shuttling and charging/discharging kinetics in lithium/sodium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16178-16184. |
59 | KONG F, CHEN L, YANG M R, et al. Investigation of the anchoring and electrocatalytic properties of pristine and doped borophosphene for Na-S batteries[J]. Physical Chemistry Chemical Physics, 2023, 25(7): 5443-5452. |
60 | JAYAN R, ISLAM M M. Mechanistic insights into interactions of polysulfides at VS2 interfaces in Na-S batteries: A DFT study[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35848-35855. |
61 | KUMAR A, GHOSH A, GHOSH A, et al. Sub-zero and room-temperature sodium-sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study[J]. Energy Storage Materials, 2021, 42: 608-617. |
62 | LUO S N, RUAN J F, WANG Y, et al. Flower-like interlayer-expanded MoS2- x nanosheets confined in hollow carbon spheres with high-efficiency electrocatalysis sites for advanced sodium-sulfur battery[J]. Small, 2021, 17(37): 2101879. |
63 | QIAN S Y, YUAN Z Y, LI G S, et al. 3D layered structure Ti3C2Tx MXene/Ni(OH)2/C with strong catalytic and adsorption capabilities of polysulfides for high-capacity sodium-sulfur battery[J]. Chemical Engineering Journal, 2023, 471: 144528. |
64 | YE X, RUAN J F, PANG Y P, et al. Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers[J]. ACS Nano, 2021, 15(3): 5639-5648. |
[1] | Ran XU, Baodong WANG, Shaoliang WANG, Qi ZHANG, Lei ZHANG, Ziyang FENG. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860. |
[2] | Jianhang YANG, Wenting FENG, Junwei HAN, Xinru WEI, Chenyu MA, Changming MAO, Linjie ZHI, Debin KONG. Recent advances in rechargeable Li/Na-Cl2 batteries: From material construction to performance evaluation [J]. Energy Storage Science and Technology, 2024, 13(6): 1824-1834. |
[3] | Chenxi LIANG, Zhenbin WANG, Mingjin ZHANG, Cunhua MA, Ning LIANG. Research progress on magnesium-based solid hydrogen storage nanomaterials [J]. Energy Storage Science and Technology, 2024, 13(3): 788-824. |
[4] | Yinchen YANG, Shanling REN, Zhihong YANG, Yunhui WANG. First principles study of two-dimensional boron antimony films as anchoring materials for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2760-2766. |
[5] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[6] | Jipeng YANG, Qiang YE. Effects of electrodeposition of bismuth in an operating iron-chromium redox flow battery base on a strategy of slow release of Bi3+ across the membrane [J]. Energy Storage Science and Technology, 2023, 12(4): 1075-1082. |
[7] | Liyuan SHEN, Guixin ZHANG, Zhaoling MA. Catalytic conversion performance study of O-doped NiCo2S4/CNT composites for Li polysulfides [J]. Energy Storage Science and Technology, 2023, 12(11): 3318-3329. |
[8] | Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824. |
[9] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[10] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[11] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[12] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[13] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[14] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[15] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||