Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (S1): 1-17.doi: 10.19799/j.cnki.2095-4239.2019.0184
Previous Articles Next Articles
LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru
Received:
2019-08-16
Revised:
2019-08-29
Online:
2019-12-05
Published:
2019-11-08
CLC Number:
LIU Tao, QIU Daping, XIA Jiannian, DENG Jiahong, CHEN Zhiyu, WEI Jinying, LI Min, YANG Ru. Structure and properties of cathode materials for ion batteries[J]. Energy Storage Science and Technology, 2019, 8(S1): 1-17.
[1] ZOU X X, XIONG P X, ZHAO J, et al. Recent research progress in non-aqueous potassium-ion batteries[J]. Physical Chemistry Chemical Physics, 2017, 19(39):26495-26506. [2] TARASCON J, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367. [3] TURCHENIUK K, BONDAREV D, SINGHAL V, et al. Ten years left to redesign lithium-ion batteries reserves of rare metals used in electric-vehicle cells are dwindling, so boost research on iron and silicon alternatives, urge Kostiantyn Turcheniuk and colleagues[J]. Nature, 2018, 559(7715):467-470. [4] ZHU Y, XIE J, PEI A, et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries[J]. Nature Communications, 2019, 10(1):doi:https://doi.org/10.1038/s41467-019-09924-1. [5] 解建强,陈彦彬,刘亚飞,等.电动汽车动力锂电池正极材料的现状 和发展趋势[J].新材料产业, 2015(11):54-59. XIE Jianqiang, CHEN Yanbin, LIU Yafei, et al. Current status and development trend of cathode materials for electric vehicle lithium battery[J]. New Materials Industry, 2015(11):54-59. [6] LI W J, HAN C, WANG W, et al. Commercial prospects of existing cathode materials for sodium ion storage[J]. Advanced Energy Materials, 2017, 7(24):doi:10.1002/aenm201700274. [7] ZHANG Y, LIU S, JI Y, et al. Emerging nonaqueous aluminum-ion batteries:Challenges, status, and perspectives[J]. Advanced Materials, 2018, 30(38):doi:10.1002/adma.201706310. [8] FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(5):doi:10.1002/aenm201501727. [9] XU Y S, DUAN S Y, SUN Y G, et al. Recent developments in electrode materials for potassium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9):4334-4352. [10] LEVI E, MITELMAN A, AURBACH D, et al. Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction[J]. Chemistry of Materials, 2007, 19(21):5131-5142. [11] YANG Y, SHU D, YU D, et al. Investigations of lithium manganese oxide materials for lithium-ion batteries[J]. Journal of Power Sources, 1997, 65(1/2):227-230. [12] SHU J, SHUI M, HUANG Y, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(7):3323-3328. [13] KIM Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux:Morphology and performance as a cathode material for lithium ion batteries[J]. ACS Applied Materials& Interfaces, 2012, 4(5):2329-2333. [14] HU L H, WU F Y, LIN C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4:doi:10.1038/ncomms2705. [15] YANG Y, LI L, FEI H, et al. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2014, 6(12):9590-9594. [16] HIGGINS T M, PARK S H, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3):3702-3713. [17] ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials:computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. [18] QING R P, SHI J L, XIAO D D, et al. Enhancing the kinetics of Lirich cathode materials through the pinning effects of gradient surface Na+doping[J]. Advanced Energy Materials, 2016, 6(6):doi:10.1002/ aenm201501914. [19] YAN P F, ZHENG J M, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 2018, 3(7):600-605. [20] YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50):13186-13200. [21] XIA S X, WU X S, ZHANG Z C, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4):753-785. [22] WANG Y, CAO G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2010, 20(12):2251-2269. [23] ISHIDZU K, OKA Y, NAKAMUR T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2 [J]. Solid State Ionics, 2016, 288, doi:10.1016/j.issi.2016.01.009. [24] ZHAO X, ZHUANG Q C, WU C, et al. Impedance studies on the capacity fading mechanism of Li (Ni0.5Co0.2Mn0.3)O2 cathode with highvoltage and high-temperature[J]. Journal of Electronic Materials, 2015, 162(14):A2770-A2779. [25] LI W D, ASL H Y, XIE Q, et al. Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(13):5097-5101. [26] NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2(x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233:121-130. [27] BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnzCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials&Interfaces, 2014, 6(24):22594-22601. [28] WU L J, NAM K W, WANG X J, et al. Structural origin of overchargeinduced thermal instability of Ni-containing layered-cathodes for highenergy-density lithium batteries[J]. Chemistry of Materials, 2011, 23(17):3953-3960. [29] JIA X B, YAN M, ZHOU Z Y, et al. Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode material for better rate capability in high voltage cycling of Li-ion batteries[J]. Electrochimica Acta, 2017, 254:50-58. [30] WU F, LI Q, CHEN L, et al. Use of Ce to reinforce the interface of Nirich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage[J]. ChemSusChem, 2019, 12(4):935-943. [31] XUE L L, LI Y J, XU B, et al. Effect of Mo doping on the structure and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material at high cut-off voltage[J]. Journal of Alloys and Compounds, 2018, 748:561-568. [32] BINDER J O, CULVER S P, PINEDO R, et al. Investigation of fluorine and nitrogen as anionic dopants in nickel-rich cathode materials for lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2018, 10(51):44452-44462. [33] ZHANG B, LI L J, ZHENG J C. Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds, 2012, 520:190-194. [34] MYUNG S T, LEE K S, CHONG S Y, et al. Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2[J]. The Journal of Physical Chemistry C, 2014, 114(10):4710-4718. [35] CHO J, KIM T G, KIM C, et al. Comparison of Al2O3- and AlPO4- coated LiCoO2 cathode materials for a Li-ion cell[J]. Journal of Power Sources, 2005, 146:58-64. [36] KONG J Z, REN C, TAI G A, et al. Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material[J]. Journal of Power Sources, 2014, 266:433-439. [37] XIONG X H, DING D, WANG Z X, et al. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole[J]. Journal of Solid State Electrochemistry, 2014, 18(9):2619-2624. [38] SHIN S S, SUN Y K, AMINE K. Synthesis and electrochemical properties of Li[Li(1-2x)/3NixMn(2-x)/3]O2 as cathode materials for lithium secondary batteries[J]. Journal of Power Sources, 2002, 112:634-638. [39] LU Z, CHEN Z, DAHN J. Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 [41] WANG J, HE X, PAILLARD E, et al. Lithium-and manganese-rich oxide cathode materials for high-energy lithium ion batteries[J]. Advanced Energy Materials, 2016, 6(21):doi:10.1002/aenm.201600906. [42] ARMSTRONG A R, HOLZAPFEL M, NOVAK P J, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26):8694-8698. [43] 张和,张梦诗,廖世军.富锂三元层状正极材料的研究进展[J].应用 化学, 2018, 35(11):1277-1288. ZHANG He, ZHANG Mengshi, LIAO Shijun. Research progress of lithium-rich layered cathode materials[J]. Chinese Journal of Applied Chemistry, 2018, 35(11):1277-1288 [44] SHANG B, NING F, LI B, et al. Suppressing voltage decay of a lithium-rich cathode material by surface enrichment with atomic ruthenium[J]. ACS Applied Materials&Interfaces, 2018, 10(25): 21349-21355. [45] WANG G, YI L, YU R, et al. Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(30):25358-25368. [46] HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides:Powerful cathodes for Na-ion batteries[J]. Energy&Environmental Science, 2015, 8(1):81-102. [47] ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes:Overcoming the challenges of sodium ion batteries[J]. Energy&Environmental Science, 2017, 10(5):1051-1074. [48] BILLAUD J, SINGH G, ARMSTRONG A R, et al. Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2):A high capacity cathode for sodium-ion batteries[J]. Energy&Environmental Science, 2014, 7(4):1387-1391. [49] WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19):doi:10.1002/ adma.201700210. [50] GUO S H, LIU P, YU H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(54):5894-5899. [51] OH S M, MYUNG S T, HWANG J Y, et al. High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries[J]. Chemistry of Materials, 2014, 26(21):6165-6171. [52] DENG J Q, LUO W B, LU X, et al. High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode[J]. Advanced Energy Materials, 2018, 8(5):doi:10.1002/ odma.201701610. [53] YU H, GOU S, ZHU Y, et al. Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries[J]. Chemical Communications, 2014, 50(4):457-459. [54] YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat. Mater., 2012, 11(6):512-517. [55] ZHAO J, ZHAO L W, DIMOV N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J].Journal of the Electrochemical Society, 2013, 160(5):A3077-A3081. [56] HASA I, BUCHHOLZ D, PASSERINI S, et al. High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2 0 1 4, 4(1 5):doi:10.1002/ aenm.201400083. [57] HAN H M, GONZALO E, SHARMA N, et al. High-performance P2- phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(1):106-116. [58] JIANG X, LIU S, XU H, et al. Tunnel-structured Na0.54Mn0.50Ti0.51O2 and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J]. Chemical Communications, 2015, 51(40): 8480-8483. [59] TINGRU C, TIAN S, ZHENGUO W, et al. Cu2+ Dual-doped layertunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability[J]. ACS Applied Materials&Interfaces, 2018, 10(12):10147-10156. [60] 方永进,陈重学,艾新平,等.钠离子电池正极材料研究进展[J].物理 化学学报, 2017, 33(1):211-241. FANG Yongjin, CHEN Zhongxue, AI Xinping, et al. Research progress in cathode materials for sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1):211-241. [61] MA J, BO S H, WU L, et al. Ordered and disordered polymorphs of Na (Ni2/3Sb1/3)O2:honeycomb-ordered cathodes for Na-ion batteries[J]. Chemistry of Materials, 2015, 27(7):2387-2399. [62] YOU Y, KIM S O, MANTHIRAM A. A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3-O1 phase transition[J]. Advanced Energy Materials, 2017, 7(5):doi:10.1002/ aenm.201601698. [63] BARKER J, SAIDI M Y, SWOYER J L. A sodium-ion cell based on the fluorophosphate compound NaVPO4F[J]. Electrochemical and Solid-State Letters, 2003, 6(1):A1-A4. [64] ONG S P, CHEVRIER V L, HAUTIER G, et al. Stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy&Environmental Science, 2011, 4(9):3680-3688. [65] ZAGHIB K, TROTTIER J, HOVINGTON P, et al. Characterization of Na-based phosphate as electrode materials for electrochemical cell[J]. Journal of Power Sources, 2011, 196(2):9612-9617. [66] LIU Y C, ZHANG N, WANG F, et al. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2018, 28(30): doi:10.1002/aenm.201801917. [67] LIM S Y, KIM H, SHAKOOR R A, et al. Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode:A combined experimental and theoretical study[J]. Journal of the Electrochemical Society, 2012, 159(9): A1393-A1397. [68] JIANG H F, CAI X Y, WANG Z, et al. Selection of graphene dopants for Na3V2(PO4)3 graphene composite as high rate, ultra long-life sodium-ion battery cathodes[J]. Electrochimica Acta, 2019, 306:558-567. [69] BARPANDA P, YE T, NISHIMURA S, et al. Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24:116-119. [70] CLARK J M, BARPANDA P, YAMADA A, et al. Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7:Diffusion behavior for high rate performance[J]. Journal of Materials Chemistry A, 2014, 2(30):11807-11812. [71] CHEN M Z, CHEN L N, HU Z, et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Advanced Materials, 2017, 29(21):doi:10.1002/adma.201605535. [72] KAWABE Y, YABUUCHI N, KAJIYAMA M, et al. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries[J]. Electrochemistry Communications, 2011, 13(11): 1225-1228. [73] ZHAO J, GAO Y, LIU Q, MENG X, et al. High rate capability and enhanced cyclability of Na3V2(PO4)2F3 cathode by in situ coating of carbon nanofibers for sodium-ion battery applications[J]. Chemistry-A European Journal, 2018, 24(12):2913-2919. [74] 王凡凡,刘晓斌,陈龙,等.室温钠离子电池关键材料研究进展[J].电 化学, 2019, 25(1):55-76. WANG Fanfan, LIU Xiaobin, CHEN Long, et al. Research progress of key materials for room temperature sodium ion batteries[J]. Electrochemistry, 2019, 25(1):55-76. [75] LU Y, WANG L, CHENG J, et al. Prussian blue:A new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52):6544-6546. [76] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7):2658-2664. [77] FENG F, CHEN S, LIAO X Z, et al. Hierarchical hollow Prussian blue rods synthesized via self-sacrifice template as cathode for high performance sodium ion battery[J]. Small Methods, 2018:doi:10.1002/ smtd.201800259. [78] LIU Y, HE D, HAN R, et al. Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries[J]. Chemical Communications, 2017, 53(40): 5569-5572. [79] LIANG Y, TAO Z, CHEN J. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2012, 2(7):742-769. [80] FANG C, HUANG Y, YUAN L, et al. A metal-organic compound as cathode material with superhigh capacity achieved by reversible cationic and anionic redox chemistry for high-energy sodium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(24): 6793-6797. [81] LUO W, ALLEN M, RAJ U, et al. An organic pigment as a highperformance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(25):doi:10.1002/aenm.201400554. [82] ZHAO Q L, WHITTAKER A K, ZHAO X S. Polymer electrode materials for sodium-ion batteries[J]. Materials, 2018, 11(2):doi: 10.3390/mall.122567. [83] EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2):221-228. [84] PEI Y, MU C, LI H, et al. Low-cost K4Fe(CN)6 as a high-voltage cathode for potassium-ion batteries[J]. ChemSusChem, 2018, 11(8): 1285-1289. [85] SU D, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29:doi:10.1002/adma.201604007. [86] PADIGI P, THIEBES J, SWAN M, et al. Prussian green:A high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166:32-39. [87] CHONG S, CHEN Y, ZHENG Y, et al. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(43):22465-22471. [88] NIKITINA V A, KUZOVCHIKOV S M, FEDOTOV S S, et al. Effect of the electrode/electrolyte interface structure on the potassiumion diffusional and charge transfer rates:Towards a high voltage potassium-ion battery[J]. Electrochimica Acta, 2017, 258:814-824. [89] SADA K, SENTHILKUMAR B, BARPANDA P. Potassium-ion intercalation mechanism in layered Na2Mn3O7[J]. ACS Applied Energy Materials, 2018, 1(10):5410-5416. [90] KIM H, SEO D H, KIM J C, et al. Investigation of potassium storage in layered P3-type K0.5MnO2 cathode[J]. Advanced Materials, 2017, 29(37):doi:10.1002/adma.201702480. [91] ZHAO S Q, YAN K, MUNROE P, et al. Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassiumion batteries[J]. Advanced Energy Materials, 2019, 9(10):doi:10.1002/ aenm.201803757. [92] GAO A, LI M, GUO N N, et al. K-birnessite electrode obtained by ion exchange for potassium-ion batteries:Insight into the concerted ionic diffusion and K storage mechanism[J]. Advanced Materials, 9(1):doi: 10.1002/adma.201802739. [93] EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials&Interfaces, 2017, 9(5):4404-4419. [94] LEE C Y, MARSCHILOK A C, SUBRAMANIAN A, et al. Synthesis and characterization of sodium vanadium oxide gels:The effects of watern and sodiumx content on the electrochemistry of NaxV2O5·nH2O[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 18047-18054. [95] MORETTI A, MARONI F, OSADA I, et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. ChemElectroChem, 2015, 2(4):529-537. [96] CLITES M, HART J L, TAHERI M L, et al. Chemically preintercalated bilayered KxV2O5·nH2O nanobelts as a high-performing cathode material for K-ion batteries[J]. ACS Energy Letters, 2018, 3(3):562-567. [97] TIAN B, TANG W, SU C, et al. Reticular V2O5·0.6H2O xerogel as cathode for rechargeable potassium ion[J]. ACS Applied Materials&Interfaces, 2018, 10(1):642-650. [98] HAN J, LI G, LIU F, et al. Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries[J]. Chemical Communications, 2017, 53(11):1805-1808. [99] PARK W B, HAN S C, PARK C S, et al. KVP2O7 as a robust high-energy cathode for potassium-ion batteries:Pinpointed by a full screening of the inorganic registry under specific search conditions[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/ adma.201703099. [100] WU X, JIAN Z, LI Z, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77:54-57. [101] BIE X, KUBOTA K, HOSAKA T, et al. A novel K-ion battery: Hexacyanoferrate (ii)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9):325-4330. [102] DENG T, FAN X, CHEN J, et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(28):doi: 10.1002/adfm.201800219. [103] WANG X, XU X, NIU C, et al. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries[J]. Nano Letters, 2017, 17(1):544-550. [104] CHEN H, ARMAND M, DEMAILLY G, et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries[J]. ChemSusChem, 2008, 1(4):348-355. [105] CHEN Y, LUO W, CARTER M, et al. Organic electrode for nonaqueous potassium-ion batteries[J]. Nano Energy, 2015, 18:205-211. [106] MA J, ZHOU E, FAN C, et al. Endowing CuTCNQ with a new role:A high-capacity cathode for K-ion batteries[J]. Chemical Communications, 2018, 54:5578-5581. [107] JIAN Z, LIANG Y, RODRÍGUEZ-PÉREZ I A, et al. Poly (anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71:5-8. [108] FU Q, SARAPULOVA A, TROUILLET V, et al. In operando synchrotron diffraction and in operando X-ray absorption spectroscopy investigations of orthorhombic V2O5 nanowires as cathode materials for Mg-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(6):2305-2315. [109] PERERA S D, ARCHER R B, DAMIN C A, et al. Controlling interlayer interactions in vanadium pentoxide-poly (ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage[J]. Journal of Power Sources, 2017, 343(1):580-591. [110] XU Y N, DENG X W, LI Q D, et al. Vanadium oxide pillared by interlayer Mg2+ ions and water as ultralong-life cathodes for magnesium-ion batteries[J]. Chem, 2019, 5(5):1194-1209. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[4] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[5] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[6] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[7] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[8] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[9] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[10] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[11] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[12] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[13] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[14] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[15] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||