[1] YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114:11636-11682.
[2] KIM S W, SEOD H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries:Pot-entail alternatives to current lithium ion batteries[J]. Advanced Energy Materials, 2012, 2:710-721.
[3] WANG L P, YU L, WANG X, et al. Recent developments in electrode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:9353-9378.
[4] KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries:Potential altern atives to current lithium-ionbatteries[J]. Advanced Energy Materials, 2012, 2(7):710-721.
[5] ARMAND M B. Materials for advanced batteries:Intercalation electrodes[M]. New York:Plenum Press, 1980:145-161.
[6] DU Y, ZHU X, ZHOU X, et al. Co3S4 porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage[J]. Journal of Materials Chemistry A, 2015, 3:6787-6791.
[7] ZHU Y, NIE P, SHEN L, et al. High rate capability and superior cycle stability of a flower-like Sb2S3 anode for high-capacity sodium ion batteries[J]. Nanoscale, 2015, 7:3309-3315.
[8] KANG Wenpei, WANG Yuyu, XU Jun. Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5:7667-7690.
[9] XIAO Y, LEE S H, SUN Y K. The application of metal sulfides in sodium ion batteries[J]. Adv. Energy Mater., 2017, 7:1601329-1601349.
[10] TENG Y, ZHAO H, LI Z, et al. MoS2 nanosheets vertically grown on graphene sheets for lithium-batteris[J]. ACS Nano, 2016, 10(9):8526-8535.
[11] SHI Zhengtian, KANG Wenpei, XU Jun, et al. In situ carbon-doped Mo(Se0.85S0.15)2 hierarchical nanotubes as stable anodes for high-performance sodium-ion batteries[J]. Small, 2015, 11(42):5667-5674.
[12] XIE Xiuqiang, MAKARYAN Taron, ZHAO Mengqiang, et al. MoS2 nanosheets vertically aligned on carbon paper:A freestanding electrode for highly reversible sodium-ion batteries[J]. Advanced Engery Materials, 2016, 6(5):doi:10.1002/aenm.201502161.
[13] CHOI S H, KO Y N, LEE J K, et al. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties[J]. Advanced Functional Materials, 2015, 25(12):1780-1788.
[14] ARUNVINAY P, FRANK D, JODIE M, et al. WS22D nanosheets in 3D nanoflowers[J]. Chemical Communication, 2014, 50:12360-12362.
[15] CAO S, LIU T, HUSSAIN S, et al. Hydrothermal synthesis of variety low dimensional WS2 nanostructures[J]. Materials Letters, 2014, 129:205-208.
[16] SEUNG H C, YUN C K. Sodium ion storage properties of WS2-decorated three-dimensional reduced graphene oxide microspheres[J]. Nanoscale, 2015, 7:3965-3970.
[17] SU Dawei, DOU Shixue, WANG Guoxiu. WS2@graphene nanocom-posites as anode materials for Na ion batteries with enhanced electrochemical performances[J]. Chemical Communication, 2014, 50:4192-4195.
[18] 田丽媛, 鞠小霞, 向枫, 等. 钠离子电池金属化合物负极材料的研究进展[J]. 储能科学与技术, 2018, 7(6):1211-1216. TIAN Liyuan, JU Xiaoxia, XIANG Feng, et al. Recent research progress of metal compounds as anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6):1211-1216.
[19] QU B, MA C, JI G, et al. Layered SnS2-reduced graphene oxide composite:A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014, 26(23):3854-3859.
[20] FENG J, SUN X, WU C, et al. Metallic few-layered VS2 ultrathin nanosheets:High two-dimensional conductivity for in-piane supercapacitors[J]. Journal of the American Chemical Society, 2011, 133(44):17832-17838.
[21] HE P, YAN M, ZHANG G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Adv. Energy Mater., 2017, 7:doi:10.1002/aenm.201601920.
[22] LIAO J Y, MANTHIRAM A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage[J]. Nano Energy, 2015, 18:20-27.
[23] WINN D A, SHEMILT J M, STEELE B C H. Titanium disulphide:A solid solution electrode for sodium and lithium[J]. Mater. Res. Bull., 1976, 11:559-566.
[24] NEWMAN G H, KLEMANN L P. Ambient temperature cycling of an Na-TiS2 cell[J]. J. Electrochem. Soc., 1980, 127:2097-2099.
[25] 苏玉平. 二维层状过渡金属硫族化合物的结构设计及其储锂/钠性能研究[D]. 苏州:苏州大学, 2018. SU Y P. 2D layered transition metal dichalcogenides:Synthesis and characterization and their application in lithium/sodium ion batteries[D]. Suzhou:Soochow University, 2018.
[26] TAO Hongwei, ZHOU Min, WANG Ruxing, et al. TiS2 as an advanced conversion electrode for sodium-ion batterieswith ultra-high capacity and long-cycle life[J]. Adv. Sci., 2018, 1801021.
[27] KULLERUD G, YUND R A. The Ni-S system and related minerals[J]. Journal of Petrology, 1962, 3(1):126-175.
[28] CHEN Q, CHEN W, YE J, et al. 1-Cysteine-assisted hydrothermal synthesis of nickel disulfide/graphene composite with enhanced electrochemical performance for reversible lithium storage[J]. Journal of Power Sources, 2015, 294:51-58.
[29] RYU H S, KIM J S, PARK J, et al. Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying[J]. Journal of Power Sources, 2013, 244:764-770.
[30] GO D Y, PARK J, NOH P J, et al. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries[J]. Materials Research Bulletin, 2014, 58:190-194.
[31] 秦伟. 金属硫化物-石墨烯复合物的微波法制备及其在钠离子电池负极的应用[D]. 上海:华东师范大学, 2016. QIN W. The microwave-assisted synthesis of metal sulfide-graphene composite for the anode of sodium-ion batteries[D]. Shanghai:East China Normal University, 2016.
[32] HOU B H, WANG Y Y, GUO J Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10(19):9218-9225.士.2016.
[32] HOU B H, WANG Y Y, GUO J Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10(19):9218-9225. |