Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2407-2413.doi: 10.19799/j.cnki.2095-4239.2024.0096
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zongxun LI1(), Qiuqiu LYU2, Haoyu ZHAO2, Jianyu HE2, Yang LIU1, Zaihong SUN1, Kaihua SUN1, Tenglong ZHU2()
Received:
2024-01-29
Revised:
2024-02-15
Online:
2024-07-28
Published:
2024-07-23
Contact:
Tenglong ZHU
E-mail:lizi5210@126.com;zhutenglong@njust.edu.cn
CLC Number:
Zongxun LI, Qiuqiu LYU, Haoyu ZHAO, Jianyu HE, Yang LIU, Zaihong SUN, Kaihua SUN, Tenglong ZHU. Research of GDC barrier layer applications by hydrothermal insitu growth in industrial-sized SOFC[J]. Energy Storage Science and Technology, 2024, 13(7): 2407-2413.
Fig. 4
SEM images of surfaces from YSZ electrolyte and GDC barrier layer by in-situ hydrothermal growth(a) Surface of YSZ electrolyte (5000x); (b) Surface of YSZ electrolyte (10000x); (c) Surface of GDC barrier layer by hydrothermal in-situ growth (10000x); (d) Surface of GDC barrier layer by hydrothermal in-situ growth (20000x)"
1 | HE S, JIANG S P. Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances[J]. Progress in Natural Science: Materials International, 2021, 31(3): 341-372. |
2 | BOLDRIN P, BRANDON N P. Progress and outlook for solid oxide fuel cells for transportation applications[J]. Nature Catalysis, 2019, 2: 571-577. |
3 | WILLIAMS M C, VORA S D, JESIONOWSKI G. Worldwide status of solid oxide fuel cell technology[J]. ECS Transactions, 2020, 96(1): 1-10. |
4 | BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604: 479-485. |
5 | MOGENSEN M B, CHEN M, FRANDSEN H L, et al. Reversible solid-oxide cells for clean and sustainable energy[J]. Clean Energy, 2019, 3(3): 175-201. |
6 | Lenser C, Udomsilp D, Menzler N H, et al. Solid oxide fuel and electrolysis cells in advanced ceramics for energy conversion and storage[M], Elsevier, 2020: 387-547. |
7 | UDOMSILP D, LENSER C, GUILLON O, et al. Performance benchmark of planar solid oxide cells based on material development and designs[J]. Energy Technology, 2021, 9(4): 2001062. |
8 | WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939. |
9 | ZHANG J, LENSER C, RUSSNER N, et al. Boosting intermediate temperature performance of solid oxide fuel cells via a tri-layer ceria-zirconia-ceria electrolyte[J]. Journal of the American Ceramic Society, 2023, 106(1): 93-99. |
10 | LI Z P, TOSHIYUKI M, AUCHTERLONIE G J, et al. Mutual diffusion ocurring at the interface between La0.6Sr0.4Co0.8Fe0.2O3 cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparation[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2772-2778. |
11 | FU C, GE X, CHAN S H, et al. Fabrication and characterization of anode-supported low-temperature SOFC based on Gd-doped ceria electrolyte[J]. Fuel Cells, 2012, 12(3): 450-456. |
12 | SıNDıRAÇ C, BÜYÜKAKSOY A, AKKURT S. Electrical properties of gadolinia doped ceria electrolytes fabricated by infiltration aided sintering[J]. Solid State Ionics, 2019, 340: 115020. |
13 | LYU Q Q, ZHU T L, LI Z X, et al. Enhancement of the cathode/electrolyte interface by a sintering-active barrier layer for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(40): 15238-15247. |
14 | LYU Q Q, ZHU T L, QU H X, et al. Lower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layer[J]. Journal of the European Ceramic Society, 2021, 41(12): 5931-5938. |
15 | MATSUDA J, KANAE S, KAWABATA T, et al. TEM and ETEM study on SrZrO3 formation at the LSCF/GDC/YSZ interfaces[J]. Ecs Transactions, 2017, 78(1): 993-1001. |
16 | SZÁSZ J, WANKMÜLLER F, WILDE V, et al. Nature and functionality of La0.58Sr0.4Co0.2Fe0.8O3- δ/Gd0.2Ce0.8O2- δ/Y0.16Zr0.84O2- δ interfaces in SOFCs[J]. Journal of the Electrochemical Society, 2018, 165(10): F898-F906. |
17 | WILDE V, STÖRMER H, SZÁSZ J, et al. Gd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructure[J]. ACS Applied Energy Materials, 2018, 1(12): 6790-6800. |
18 | MOLIN S, KARCZEWSKI J, KAMECKI B, et al. Processing of Ce0.8Gd0.2O2- δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance[J]. Journal of the European Ceramic Society, 2020, 40(15): 5626-5633. |
19 | KHAN M Z, SONG R H, MEHRAN M T, et al. Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review[J]. Ceramics International, 2021, 47(5): 5839-5869. |
20 | JANG I, KIM S, KIM C, et al. Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance[J]. Journal of Power Sources, 2019, 435: 226776. |
21 | MEHRANJANI A S, CUMMING D J, SINCLAIR D C, et al. Low-temperature co-sintering for fabrication of zirconia/ceria bi-layer electrolyte via tape casting using a Fe2O3 sintering aid[J]. Journal of the European Ceramic Society, 2017, 37(13): 3981-3993. |
22 | CODDET P, VULLIET J, RICHARD C, et al. Characteristics and properties of a magnetron sputtered gadolinia-doped ceria barrier layer for solid oxide electrochemical cells[J]. Surface and Coatings Technology, 2018, 339: 57-64. |
23 | DE VERO J C, DEVELOS-BAGARINAO K, MATSUDA H, et al. Sr and Zr transport in PLD-grown Gd-doped ceria interlayers[J]. Solid State Ionics, 2018 (314): 165-171. |
24 | FONSECA F C, UHLENBRUCK S, NEDÉLÉC R, et al. Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(6): 1599-1604. |
25 | MYUNG D H, HONG J, YOON K, et al. The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell[J]. Journal of Power Sources, 2012, 206: 91-96. |
26 | NURK G, VESTLI M, MÖLLER P, et al. Mobility of Sr in gadolinia doped ceria barrier layers prepared using spray pyrolysis, pulsed laser deposition and magnetron sputtering methods[J]. Journal of the Electrochemical Society, 2015, 163(2): F88-F96. |
27 | RIEGRAF M, HAN F, SATA N, et al. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide cells: Physicochemical aspects[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37239-37251. |
28 | 赵浩宇, 吕秋秋, 程丽亚, 等. 水热原位生长制备致密氧化铈基固体氧化物燃料电池隔离层[J]. 硅酸盐学报, 2023, 51(4): 1000-1006. |
ZHAO H Y, LYU Q Q, CHENG L Y, et al. In-situ hydrothermal growth of dense ceria based barrier layer for solid oxide fuel cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1000-1006. | |
29 | 崔同慧, 李航越, 吕泽伟, 等. 大尺寸固体氧化物燃料电池的电极过程解析方法[J]. 物理化学学报, 2022, 38(8): 48-56. |
CUI T H, LI H Y, LYU Z W, et al. Identification of electrode process in large-size solid oxide fuel cell[J]. Acta Physico-Chimica Sinica, 2022, 38(8): 48-56. | |
30 | 王怡戈, 李航越, 吕泽伟, 等. 工业尺寸固体氧化物燃料电池高效及阳极安全运行条件研究[J]. 化学学报, 2022, 80(8): 1091-1101. |
WANG Y G, LI H Y, LYU Z W, et al. Study of operating conditions for high efficiency and anode safety of industrial-size solid oxide fuel cell[J]. Acta Chimica Sinica, 2022, 80(8): 1091-1101. | |
31 | LI H,LYU Z, HAN M. Robust and fast estimation of equivalent circuit model from noisy electrochemical impedance spectra[J]. Electrochimica Acta, 2022 (422): 140474. |
[1] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[2] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[3] | Zheng LI, Zhenzhong YANG, Qiong WANG, Renzong HU. Patent intelligence analysis of the research progress in low-temperature electrolytes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2317-2326. |
[4] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[5] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[6] | Yuhang LI, Zhuo HAN, Xufei AN, Danfeng ZHANG, Guorui ZHENG, Ming LIU, Yanbing HE. Progress of ion transport in solid-state battery research based on solid state nuclear magnetic resonance [J]. Energy Storage Science and Technology, 2024, 13(1): 178-192. |
[7] | Zhuo LI, Xin GUO. Solidification of polymer-based electrolytes for energy-density solid-state batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 212-230. |
[8] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[9] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[10] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[11] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[12] | Jiayi ZHANG, Suting WENG, Zhaoxiang WANG, Xuefeng WANG. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
[13] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[14] | Shenran ZHANG, Lihuan XU, Chang SU. Influence of different carbon contents on the electrochemical performance of SiO/C anode [J]. Energy Storage Science and Technology, 2023, 12(6): 1784-1793. |
[15] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||