Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1487-1495.doi: 10.19799/j.cnki.2095-4239.2023.0903
• Energy Storage Materials and Devices • Previous Articles Next Articles
Junjie LU(), Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG()
Received:
2023-12-15
Revised:
2024-01-03
Online:
2024-05-28
Published:
2024-05-28
Contact:
Jinglun WANG
E-mail:1016957950@qq.com;jlwang@hnust.edu.cn
CLC Number:
Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery[J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495.
Table 1
Effect of electrolyte on low temperature performance of Li/CF xbattery"
CF x | Electrolyte | Temp./℃ | E1/2/V | Cut off voltage /V | Capacity /(mAh/g) | Discharge rate | Ref. |
---|---|---|---|---|---|---|---|
CF0.65 | 0.5 mol/L LiBF4-PC∶DME(2∶8, 体积比)+1.5%(体积分数)TTFEB | -60 | ~1.5 | 0.5 | 275 | 0.2C | [ |
CF x | 1 mol/L LiBF4-GBL+2% (体积分数)15-crown-5 | -45 | 1.5 | 0.25 | 140 | — | [ |
CF x | 1mol/L LiPF6-EC∶DMC∶EMC (1∶1∶3, 体积比)+2%(体积分数)15-crown-5 | -50 | 1.3 | 0.25 | 110 | — | [ |
CF x | 1 mol/L LiBF4-PC∶DME (1∶1, 体积比)+10%(质量分数)SN | 0 | 2.2 | 1.5 | 527 | 0.5C | [ |
CF0.99~1.08 | 0.5 mol/L LiBF4-AN∶BL (1∶1, 体积比) | -50 | ~1.8 | 1.5 | ~580 | 0.02C | [ |
CF1.0 | 1 mol/L LiBF4-Me2O∶PC (6.5∶1, 体积比) | -60 | ~2.1 | 1.5 | 780 | 10 mA/g | [ |
CF1.0 | 1 mol/L LiBF4-PC∶MB (1∶2, 体积比) | -70 | ~1.0 | 0.5 | 240 | 0.1C | [ |
CF1.0 | 0.78 mol/L LiBF4+0.22 mol/L LiFSI-PC∶DME∶iBA (23∶69∶8, 体积比) | -60 | ~1.3 | 1.0 | 433 | 0.1C | [ |
Table 2
Effect of electrolyte on the rate performance of Li/CF x battery"
CF x | Electrolyte | Temp./℃ | E1/2/V | Cut off voltage/V | Capacity/(mAh/g) | Discharge rate | Ref. |
---|---|---|---|---|---|---|---|
CF0.99~1.08 | 1 mol/L LiClO4-TTE∶DME∶PC (2∶2∶1, 体积比) | 25 | ~1.85 | 1.5 | 425 | 5000 mA/g | [ |
CF1.0 | 1 mol/L LiBF4-PC∶DME∶A(1∶1∶1, 体积比 ) | 50 | 2.16 | 1.5 | 758 | 2 C | [ |
CF1.15 | 1 mol/L LiBF4-EC∶DMC (1∶1, 体积比)+0.01 mol/L BF3(g) | 25 | ~1.8 | 1.5 | 416 | 15 C | [ |
CF1.0 | 1 mol/L LiBF4-PC∶DME (1∶1, 体积比)+1%(质量分数)PRZ | 25 | 2.60 | 1.5 | 770 | 1000 mA/g | [ |
CF1.11 | 1 mol/L LiBF4-F5EON∶DME (1∶1, 体积比) | 25 | 2.20 | 1.5 | 771 | 1000 mA/g | [ |
1 | 国家发展和改革委员会, 国家能源局. "十四五"新型储能发展实施方案[R/OL]. [2023-01-05].https://www.gov.cn/zhengce/zhengceku/2022-03/22/5680417/files/41a50cec48e84cc4adfca855c3444f6b.pdf |
2 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
3 | WANG H S, YU Z A, KONG X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616. |
4 | CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78. |
5 | LIM H D, PARK H, KIM H, et al. A new perspective on Li-SO2 batteries for rechargeable systems[J]. Angewandte Chemie (International Ed in English), 2015, 54(33): 9663-9667. |
6 | GUÉRIN K, DUBOIS M, HOUDAYER A, et al. Applicative performances of fluorinated carbons through fluorination routes: A review[J]. Journal of Fluorine Chemistry, 2012, 134: 11-17. |
7 | GAO M T, CAI D M, LUO S F, et al. Research progress in fluorinated carbon sources and the discharge mechanism for Li/CFx primary batteries[J]. Journal of Materials Chemistry A, 2023, 11(31): 16519-16538. |
8 | LEUNG K, SCHORR N B, MAYER M, et al. Edge-propagation discharge mechanism in CFx batteries—a first-principles and experimental study[J]. Chemistry of Materials, 2021, 33(5): 1760-1770. |
9 | 汤才, 蒋江民, 王新峰, 等. Li/CFx一次电池研究进展[J]. 储能科学与技术, 2023, 12(4): 1093-1109. |
TANG C, JIANG J M, WANG X F, et al. Research progress of Li/CFx primary batteries[J]. Energy Storage Science and Technology, 2023, 12(4): 1093-1109. | |
10 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
11 | 陈雨晴, 张洪章, 于滢, 等. 锂硫一次电池的研究现状及展望[J]. 储能科学与技术, 2017, 6(3): 529-533. |
CHEN Y Q, ZHANG H Z, YU Y, et al. The R & D status and prospects for primary lithium sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 529-533. | |
12 | CHEN X, ZHANG X Q, LI H R, et al. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in Lithium batteries[J]. Batteries & Supercaps, 2019, 2(2): 114. |
13 | WHITACRE J F, WEST W C, SMART M C, et al. Enhanced low-temperature performance of Li-CFx batteries[J]. Electrochemical and Solid-State Letters, 2007, 10(7): A166. |
14 | ZHANG S S, XU K, JOW T R. Study of LiBF4 as an electrolyte salt for a Li-ion battery[J]. Journal of the Electrochemical Society, 2002, 149(5): A586. |
15 | MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. |
16 | PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. |
17 | WATANABE N. Two types of graphite fluorides, (CF)n and (C2F)n, and discharge characteristics and mechanisms of electrodes of (CF)n and (C2F)n in lithium batteries[J]. Solid State Ionics, 1980, 1(1/2): 87-110. |
18 | NAKAJIMA T, KOH M, GUPTA V, et al. Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine[J]. Electrochimica Acta, 2000, 45(10): 1655-1661. |
19 | ZHANG S X, KONG L C, LI Y, et al. Fundamentals of Li/CFx battery design and application[J]. Energy & Environmental Science, 2023, 16(5): 1907-1942. |
20 | BAN J, JIAO X X, FENG Y Y, et al. All-temperature, high-energy-density Li/CFx batteries enabled by a fluorinated ether as a cosolvent[J]. ACS Applied Energy Materials, 2021, 4(4): 3777-3784. |
21 | WATANABE N, NAKAJIMA T, HAGIWARA R. Discharge reaction and overpotential of the graphite fluoride cathode in a nonaqueous lithium cell[J]. Journal of Power Sources, 1987, 20(1/2): 87-92. |
22 | FANG Z, YANG Y, ZHENG T L, et al. An all-climate CFx/Li battery with mechanism-guided electrolyte[J]. Energy Storage Materials, 2021, 42: 477-483. |
23 | YIN Y J, HOLOUBEK J, LIU A, et al. Ultralow-temperature Li/CFx batteries enabled by fast-transport and anion-pairing liquefied gas electrolytes[J]. Advanced Materials, 2023, 35(3): e2207932. |
24 | HAN S S, YU T H, MERINOV B V, et al. Unraveling structural models of graphite fluorides by density functional theory calculations[J]. Chemistry of Materials, 2010, 22(6): 2142-2154. |
25 | PISCHEDDA V, RADESCU S, DUBOIS M, et al. Experimental and DFT high pressure study of fluorinated graphite (C2F)N[J]. Carbon, 2017, 114: 690-699. |
26 | NAGASUBRAMANIAN G, SANCHEZ B. A new chemical approach to improving discharge capacity of Li/(CFx)n cells[J]. Journal of Power Sources, 2007, 165(2): 630-634. |
27 | LI Q, XUE W, SUN X, et al. Gaseous electrolyte additive BF3 for high-power Li/CFx primary batteries[J]. Energy Storage Materials, 2021, 38: 482-488. |
28 | DONG X L, WANG Y G, XIA Y Y. Promoting rechargeable batteries operated at low temperature[J]. Accounts of Chemical Research, 2021, 54(20): 3883-3894. |
29 | ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899. |
30 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. |
31 | KULOVA T L, SKUNDIN A M. A critical review of electrode materials and electrolytes for Low- Temperature Lithium-Ion Batteries[J]. International Journal of Electrochemical Science, 2020, 15(9): 8638-8661. |
32 | 胡华坤, 薛文东, 霍思达, 等. 锂离子电池电解液SEI成膜添加剂的研究进展[J]. 化工学报, 2022, 73(4): 1436-1454. |
HU H K, XUE W D, HUO S D, et al. Review of SEI film forming additives for electrolyte of lithium ion battery[J]. CIESC Journal, 2022, 73(4): 1436-1454. | |
33 | IGNATOVA A A, YARMOLENKO O V, TULIBAEVA G Z, et al. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx-systems at temperatures up to-50 ℃[J]. Journal of Power Sources, 2016, 309: 116-121. |
34 | WANG N, LUO Z Y, ZHANG Q F, et al. Succinonitrile broadening the temperature range of Li/CFx primary batteries[J]. Journal of Central South University, 2023, 30(2): 443-453. |
35 | HOLOUBEK J, KIM K, YIN Y J, et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries[J]. Energy & Environmental Science, 2022, 15(4): 1647-1658. |
36 | HOLOUBEK J, BASKIN A, LAWSON J W, et al. Predicting the ion desolvation pathway of lithium electrolytes and their dependence on chemistry and temperature[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4426-4433. |
37 | ZHANG S S, FOSTER D, READ J. A low temperature electrolyte for primary Li/CFx batteries[J]. Journal of Power Sources, 2009, 188(2): 532-537. |
38 | LIANG H J, SU M Y, ZHAO X X, et al. Weakly-solvating electrolytes enable ultralow-temperature (-80 ℃) and high-power CFx/Li primary batteries[J]. Science China Chemistry, 2023, 66(7): 1982-1988. |
39 | XUE W R, QIN T, LI Q, et al. Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes[J]. Energy Storage Materials, 2022, 50: 598-605. |
40 | 刘雯, 杨炜婧, 郭瑞, 等. 功率型锂/氟化碳一次电池的优化设计研究进展[J]. 化学通报, 2019, 82(6): 483-487. |
LIU W, YANG W J, GUO R, et al. Progress in optimization design of high-power lithium/carbon fluorides primary batteries[J]. Chemistry, 2019, 82(6): 483-487. | |
41 | LI Y, FENG Y Y, FENG W. Deeply fluorinated multi-wall carbon nanotubes for high energy and power densities lithium/carbon fluorides battery[J]. Electrochimica Acta, 2013, 107: 343-349. |
42 | 张懋慧. 有机电解液对氟化碳电极界面性能研究[D]. 昆明: 云南师范大学, 2014. |
ZHANG M H. Study on interfacial properties of organic electrolyte to fluorocarbon electrode[D]. Kunming: Yunnan Normal University, 2014. | |
43 | ZHANG Y Q, JIANG J M, ZHANG L, et al. BF3-based electrolyte additives promote electrochemical reactions to boost the energy density of Li/CFx primary batteries[J]. Electrochimica Acta, 2023, 470: 143311. |
44 | ZHOU X, PENG D, DENG K Q, et al. Synthesis and characterization of novel fluorinated nitriles as non-flammable and high-voltage electrolytes for lithium/lithium-ion batteries[J]. Journal of Power Sources, 2023, 557: 232557. |
45 | ZHOU X, KOZDRA M, RAN Q, et al. 3-(2, 2, 2-Trifluoroethoxy)propionitrile-based electrolytes for high energy density lithium metal batteries[J]. Nanoscale, 2022, 14(46): 17237-17246. |
46 | 汪靖伦, 卢俊杰. 一种高比容量高倍率性能的锂-氟化碳电池电解液: CN116470080A[P]. 2023-07-21. |
WANG J L, LU J J. Lithium-carbon fluoride battery electrolyte with high specific capacity and high rate capability: CN116470080A[P]. 2023-07-21. | |
47 | GUÉRIN K, YAZAMI R, HAMWI A. Hybrid-type graphite fluoride as cathode material in primary lithium batteries[J]. Electrochemical and Solid-State Letters, 2004, 7(6): A159. |
48 | PANG C K, DING F, SUN W B, et al. A novel dimethyl sulfoxide/1, 3-dioxolane based electrolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau[J]. Electrochimica Acta, 2015, 174: 230-237. |
49 | FU A, XIAO Y K, JIAN J H, et al. Boosting the energy density of Li||CFx primary batteries using a 1, 3-dimethyl-2-imidazolidinone-based electrolyte[J]. ACS Applied Materials & Interfaces, 2021, 13(48): 57470-57480. |
50 | XIAO Y K, JIAN J H, FU A, et al. Substantially promoted energy density of Li||CFx primary battery enabled by Li+-DMP coordinated structure[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6217-6229. |
51 | KRISHNAMURTHY V, VISWANATHAN V. Beyond transition metal oxide cathodes for electric aviation: The case of rechargeable CFx[J]. ACS Energy Letters, 2020, 5(11): 3330-3335. |
[1] | Junli GUO. Legal governance measures for fire safety of electrochemical energy storage power stations [J]. Energy Storage Science and Technology, 2024, 13(5): 1744-1747. |
[2] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[3] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[4] | Xixiang XU, Yue ZHAO, Mingyue RUAN, Qiang LI. CoO lithium storage mechanism revealed based on magnetic measurement [J]. Energy Storage Science and Technology, 2024, 13(1): 12-23. |
[5] | Yimei OUYANG, Mengmeng ZHAO, Guiming ZHONG, Zhangquan PENG. Nuclear magnetic resonance spectroscopy for probing interfaces in electrochemical energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(1): 157-166. |
[6] | Zhuo LI, Xin GUO. Solidification of polymer-based electrolytes for energy-density solid-state batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 212-230. |
[7] | Huan LIU, Na PENG, Qingwen GAO, Wenpeng LI, Zhirong YANG, Jingtao WANG. Crown ether-doped polymer solid electrolyte for high-performance all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2401-2411. |
[8] | Zhihao LIU, Tong DU, Ruirui LI, Tao DENG. Developments of wide temperature range, high voltage and safe EC-free electrolytes [J]. Energy Storage Science and Technology, 2023, 12(8): 2504-2525. |
[9] | Qixin GAO, Jingteng ZHAO, Guoxing LI. Research progress on fast-charging lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2166-2184. |
[10] | Shenran ZHANG, Lihuan XU, Chang SU. Influence of different carbon contents on the electrochemical performance of SiO/C anode [J]. Energy Storage Science and Technology, 2023, 12(6): 1784-1793. |
[11] | Lingfeng HUANG, Dongmei HAN, Sheng HUANG, Shuanjin WANG, Min XIAO, Yuezhong MENG. Research progress of polymer electrolytes containing organoboron for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1815-1830. |
[12] | Lei LEI, Peng GAO, Nana FENG, Kunpeng CAI, Hai ZHANG, Yang ZHANG. The influences of multifactors in the synthesis progress on the characteristics of lithium lanthanum zirconate solid electrolytes [J]. Energy Storage Science and Technology, 2023, 12(5): 1625-1635. |
[13] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[14] | Kangkang QU, Yahua LIU, Die HONG, Zhaoxi SHEN, Xiaozhao HAN, Xu ZHANG. Research progress on positive electrolytes for neutral aqueous organic redox flow battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1570-1588. |
[15] | Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte [J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||