Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2399-2406.doi: 10.19799/j.cnki.2095-4239.2024.0084
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shirong TAN1(), Wenji YIN2, Cuihong ZENG2, Xiaoqiong LI2, Shuo QI1, Fangli JI1, Sijiang HU2(), Hongqiang WANG2, Qingyu LI2
Received:
2024-01-29
Revised:
2024-04-07
Online:
2024-07-28
Published:
2024-07-23
Contact:
Sijiang HU
E-mail:tanshirong@cngrgf.com.cn;sjhu@gxnu.edu.cn
CLC Number:
Shirong TAN, Wenji YIN, Cuihong ZENG, Xiaoqiong LI, Shuo QI, Fangli JI, Sijiang HU, Hongqiang WANG, Qingyu LI. Role of high temperature quenching in structure and performance of Mn-based layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2399-2406.
Fig. 2
Galvanostatic charge/discharge curves of NFCMO and NFCMO-LN electrodes in 2.0—4.0 V at 0.1 C; (b), (c) Cyclic voltammetry curves of NFCMO and NFCMO-LN electrodes in 2.0—4.0 V; (d) Galvanostatic charge/discharge curves of NFCMO, and NFCMO-LN electrodes in 2.0—4.5 V at 0.1 C; (e), (f) Cyclic voltammetry curves of NFCMO and NFCMO-LN electrodes in 2.0—4.5 V"
1 | WEI F L, ZHANG Q P, ZHANG P, et al. Review—Research progress on layered transition metal oxide cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(5): 050524. |
2 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
3 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. |
4 | RAHMAN M M, ONI A O, GEMECHU E, et al. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 2020, 223: 113295. |
5 | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
ZHANG K, XU Y L. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. | |
6 | ZHOU R, LU J Y, WANG G S, et al. Thermal management of hybrid energy storage for electromagnetic launch[J]. IEEE Transactions on Plasma Science, 2017, 45(7): 1459-1464. |
7 | WU F, ZHU N, BAI Y, et al. Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21381-21386. |
8 | 栗志展, 秦金磊, 梁嘉宁, 等. 高镍三元层状锂离子电池正极材料: 研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. | |
9 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
10 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): 2001310. |
11 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
12 | DAVID L, BHANDAVAT R, SINGH G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano, 2014, 8(2): 1759-1770. |
13 | RAMESH A, TRIPATHI A, BALAYA P. A mini review on cathode materials for sodium-ion batteries[J]. International Journal of Applied Ceramic Technology, 2021, doi:10.1111/ijac.13920. |
14 | LU J L, ZHANG J W, HUANG Y Y, et al. Advances on layered transition-metal oxides for sodium-ion batteries: a mini review[J]. Frontiers in Energy Research, 2023, 11: 10.3389/fenrg.2023. 1246327. |
15 | LIU Y H, ZHANG Y H, MA J, et al. Challenges and strategies toward practical application of layered transition metal oxide cathodes for sodium-ion batteries[J]. Chemistry of Materials, 2024, 36(1): 54-73. |
16 | WANG L, TIAN H L, YAO X, et al. Research progress and modification measures of anode and cathode materials for sodium-ion batteries[J]. ChemElectroChem, 2024, 11(1): doi: 10.1002/celc.202300414. |
17 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1): 81-85. |
18 | WANG Q, CHU S Y, GUO S H. Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2167-2176. |
19 | LIU Q N, HU Z, CHEN M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): e1805381. |
20 | SUN Y, GUO S H, ZHOU H S. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840. |
21 | JAYAMKONDAN Y, PENKI T R, NAYAK P K. Recent advances and challenges in the development of advanced positive electrode materials for sustainable Na-ion batteries[J]. Materials Today Energy, 2023, 36: 101360. |
22 | KIM H J, VORONINA N, KÖSTER K, et al. Synergetic impact of dual substitution on anionic-cationic activity of P2-type sodium manganese oxide[J]. Energy Storage Materials, 2024, 66: 103224. |
23 | YANG C S, PENG X, YU J L, et al. Engineering crystal-facet modulation to obtain stable Mn-based P2-layered oxide cathodes for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 629(Pt B): 1061-1067. |
24 | HOU P Y, LI F, WANG Y Y, et al. Mitigating the P2-O2 phase transition of high-voltage P2-Na2/3[Ni1/3Mn2/3]O2 cathodes by cobalt gradient substitution for high-rate sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(9): 4705-4713. |
25 | HOU P, DONG M H, LIN Z Z, et al. Alleviating the Jahn-Teller distortion of P3-type manganese-based cathodes by compositionally graded structure for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, doi: 10.1021/cen-09025-ad15. |
26 | CHENG C, CHEN C, CHU S Y, et al. Enhancing the reversibility of lattice oxygen redox through modulated transition metal-oxygen covalency for layered battery electrodes[J]. Advanced Materials, 2022, 34(20): 2201152. |
27 | LI X L, MA C, ZHOU Y N. Transition metal vacancy in layered cathode materials for sodium-ion batteries[J]. Chemistry-A European Journal, 2023, 29(22): 2203586. |
28 | DING C S, CHEN Z, CAO C X, et al. Advances in Mn-based electrode materials for aqueous sodium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 192. |
29 | LIU X S, ZHONG G M, XIAO Z M, et al. Al and Fe-containing Mn-based layered cathode with controlled vacancies for high-rate sodium ion batteries[J]. Nano Energy, 2020, 76: 104997. |
30 | SUN X, JI X Y, XU H Y, et al. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties[J]. Electrochimica Acta, 2016, 208: 142-147. |
[1] | Lifeng WANG, Naiqing REN, Hai YANG, Yu YAO, Yan YU. Advances in low-temperature electrolytes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2206-2223. |
[2] | Dan LI, Tie MA, Hanhao LIU, Li GUO. Carbon-coated nano-bismuth as high-rate sodium anode material [J]. Energy Storage Science and Technology, 2024, 13(6): 1775-1785. |
[3] | Qingyi LIU. Energy storage mechanism and performance enhancement strategies of sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1871-1873. |
[4] | Yiwei ZHAO, Fuhua ZHANG, Shun YAN, Kun DING, Haifeng LAN, Hui LIU. Research progress on the conductivity of Prussian blue sodium-ion battery cathode materials [J]. Energy Storage Science and Technology, 2024, 13(5): 1474-1486. |
[5] | Zeping FANG, Bao QIU, Zhaoping LIU. Progress of "reversible high-oxygen activity" of lithium-rich layered oxide anode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 240-251. |
[6] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[7] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[8] | Ya′nan ZHOU, Weibo HUA, Dezhong ZHOU. Understanding the Na+ transport kinetics and phase transition mechanism of O3-NaNi0.4Fe0.2Mn0.4O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1011-1017. |
[9] | Na CHEN, Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351. |
[10] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[11] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[12] | Ziying CHEN, Xiang DING, Qingsong TONG, Junyan LI, Jingyu HUANG. Application progress of doping technology in Mn-based lithium rich oxide cathode materials [J]. Energy Storage Science and Technology, 2022, 11(8): 2681-2690. |
[13] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[14] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[15] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||