Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3340-3351.doi: 10.19799/j.cnki.2095-4239.2023.0467
• Energy Storage Materials and Devices • Previous Articles Next Articles
Na CHEN(), Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN()
Received:
2023-07-06
Revised:
2023-07-29
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xue QIN
E-mail:chenna_1@tju.edu.cn;qinxue@tju.cn
CLC Number:
Na CHEN, Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351.
Fig. 4
(a) A~F SEM image (A), HAADF-STEM image (B), and EDS elemental mappings (C~F) of hexapod EDTA-NMF with etching for 60 h. All scale bars represent 500 nm; (b) Etching mechanism of NMF with Na2EDTA; (c) Cycling performances of two NMFs at 500 mA/g and the Coulombic efficiency of hexapod EDTA-NMF[30]"
Fig. 5
(a) Long-term cycling stability of PW-HN and PB-Bulk at 10 C[32]; (b) Long-term cycling stability of LD-PB and D-PB at 100 C and (c) the role of competing coordination agent in the synthesis process of PB and the calculation of the binding energies between iron ion and different coor-dination agents[39]"
Table 1
Electrochemical performance of Prussian blue cathode materials for sodium-ion batteries"
Samples | Capacity /(mAh/g@mA/g) | Cyclability /(cycles, retention%@mA/g) | Rate capacity /(mAh/g@mA/g) | Refs. |
---|---|---|---|---|
Na1.41Mn0.32Fe0.11Co0.28Ni0.32Cu0.32[Fe(CN)6]·2.89H2O | 105@15 | 50000,79@1500 | 36@7500 | [ |
K2Mn[Fe(CN)6] | 120@25 | 2000,75@100 | 56@2000 | [ |
Na2Mn0.6Fe0.2Ni0.2(CN)6 | 115@15 | 2000,66@750 | 84@15000 | [ |
Na1.6Mn0.75(□Mn)0.25[Fe(CN)6]·1.57H2O | 137@25 | 2700,72@500 | 100@500 | [ |
Na1.76FeFe(CN)6·2.6H2O | 115@20 | 1000,76@200 | 75@4000 | [ |
Na2-xMnFe(CN)6 | 164@10 | 500,57@100 | 110@500 | [ |
C‐FeHCF | 123@17 | 1000,87@1700 | 77.8@8500 | [ |
Na1.37Fe[Fe(CN)6]0.91⋅1.65 H2O | 130@50 | 3000,97@10000 | 101@10000 | [ |
MnNiPB | 93@100 | 500,96@100 | 70@4000 | [ |
1 | ZHAO Y, DING Y, LI Y T, et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage[J]. Chemical Society Reviews, 2015, 44(22): 7968-7996. |
2 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197. |
3 | JI X L. A paradigm of storage batteries[J]. Energy & Environmental Science, 2019, 12(11): 3203-3224. |
4 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2017, 16(1): 16-22. |
5 | YANG C, XIN S, MAI L Q, et al. Materials design for high-safety sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974. |
6 | ZHU X H, MENG F Q, ZHANG Q H, et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries[J]. Nature Sustainability, 2021, 4(5): 392-401. |
7 | BOSTRÖM H L B, COLLINGS I E, DAISENBERGER D, et al. Probing the influence of defects, hydration, and composition on Prussian blue analogues with pressure[J]. Journal of the American Chemical Society, 2021, 143(9): 3544-3554. |
8 | TARASCON J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule, 2020, 4(8): 1616-1620. |
9 | HU Y S, LI Y Q. Unlocking sustainable Na-ion batteries into industry[J]. ACS Energy Letters, 2021, 6(11): 4115-4117. |
10 | LIU Y C, SHEN Q Y, ZHAO X D, et al. Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes[J]. Advanced Functional Materials, 2020, 30(6): 1907837. |
11 | SHEN Q Y, LIU Y, C ZHAO X D, et al. Transition-metal vacancy manufacturing and sodium-site doping enable a high-performance layered oxide cathode through cationic and anionic redox chemistry[J]. Advanced Functional Materials, 2021, 31(51): 2106923. |
12 | JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
13 | LIU X Y, CAO Y, SUN J. Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2022, 12(46): 2202532. |
14 | XIE B X, SUN B Y, GAO T Y, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coordination Chemistry Reviews, 2022, 460: 214478. |
15 | RAJAGOPALAN R, TANG Y G, JIA C K, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592. |
16 | CHEN X, FENG X, REN B, et al. High rate and long lifespan sodium-organic batteries using pseudocapacitive porphyrin complexes-based cathode[J]. Nano-Micro Letters, 2021, 13(1): 1-16. |
17 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): 2001310. |
18 | CHAYAMBUKA K, MULDER G, DANILOV D, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): 1800079. |
19 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. |
20 | WU X Y, WU C H, WEI C X, et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5393-5399. |
21 | LIU Y, QIAO Y, ZHANG W X, et al. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes[J]. Nano Energy, 2015, 12: 386-393. |
22 | PENG J, ZHANG B, HUA W B, et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angewandte Chemie International Edition, 2023, 62(6): e202215865. |
23 | CAMACHO P S, WERNERT R, DUTTINE M, et al. Impact of synthesis conditions in Na-rich Prussian blue analogues[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42682-42692. |
24 | LI X X, SHANG Y, YAN D, et al. Topotactic epitaxy self-assembly of potassium manganese hexacyanoferrate superstructures for highly reversible sodium-ion batteries[J]. ACS Nano, 2022, 16(1): 453-461. |
25 | XU Z, SUN Y, XIE J, et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J]. Materials Today Sustainability, 2022, 18: 100113. |
26 | SUN J G, YE H L, OH J A S, et al. Alleviating mechanical degradation of hexacyanoferrate via strain locking during Na+ insertion/extraction for full sodium ion battery[J]. Nano Research, 2022, 15(3): 2123-2129. |
27 | XI Y M, LU Y C. Electrochemically active Mn-doped iron hexacyanoferrate as the cathode material in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39022-39030. |
28 | HUANG Y X, XIE M, ZHANG J T, et al. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J]. Nano Energy, 2017, 39: 273-283. |
29 | PENG J A, WANG J S, YI H C, et al. Sodium ion batteries: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs[J]. Advanced Energy Materials, 2018, 8(11): 1702856. |
30 | SHANG Y, LI X X, SONG J J, et al. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: Suppressing jahn-teller distortion for ultrastable sodium storage[J]. Chem, 2020, 6(7): 1804-1818. |
31 | JIANG Y, SHEN L X, MA H T, et al. A low-strain metal organic framework for ultra-stable and long-life sodium-ion batteries[J]. Journal of Power Sources, 2022, 541: 231701. |
32 | REN W H, ZHU Z X, QIN M S, et al. Prussian white hierarchical nanotubes with surface-controlled charge storage for sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(15): 1806405. |
33 | WANG W L, HU Z, YAN Z C, et al. Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery[J]. Energy Storage Materials, 2020, 30: 42-51. |
34 | TANG W, XIE Y Y, PENG F W, et al. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3910-A3917. |
35 | PENG J A, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2- xMnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(32): e202205867. |
36 | HE S L, ZHAO J M, RONG X H, et al. Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries[J]. Chemical Engineering Journal, 2022, 428: 131083. |
37 | GENG W G, ZHANG Z H, YANG Z L, et al. Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries[J]. Chemical Communications, 2022, 58(28): 4472-4475. |
38 | GUO J H, FENG F, ZHAO S Q, et al. High FeLS(C) electrochemical activity of aniron hexacyanoferrate cathode boosts superior sodium ion storage[J]. Carbon Energy, 2023, 5(5): e314. |
39 | JIANG M W, HOU Z D, WANG J J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage[J]. Nano Energy, 2022, 102: 107708. |
40 | 钱江锋, 周敏, 曹余良, 等. NaxMyFe(CN)6(M=Fe, Co, Ni): 一类新颖的钠离子电池正极材料[J]. 电化学, 2012, 18(2): 108-112. |
QIAN J F, ZHOU M, CAO Y L, et al. NaxMyFe(CN)6 (M=Fe, Co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry, 2012, 18(2): 108-112. | |
41 | WANG W L, GANG Y, PENG J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(25): 2111727. |
42 | LI Y J, WANG X F, GAO Y R, et al. Native vacancy enhanced oxygen redox reversibility and structural robustness[J]. Advanced Energy Materials, 2019, 9(4): 1803087. |
43 | MORTEMARD DE BOISSE B, NISHIMURA S, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7- x[ϒ1/7Mn6/7]O2 (ϒ: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8(20): 1800409. |
44 | WAN M, ZENG R, MENG J T, et al. Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters, 2022, 14(1): 9. |
45 | YUE Y F, BINDER A J, GUO B K, et al. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications[J]. Angewandte Chemie International Edition, 2014, 53(12): 3134-3137. |
46 | 沈志龙. 锰基普鲁士蓝类钠离子电池正极材料的共沉淀法制备及电化学性能研究[D]. 杭州: 浙江大学, 2019. |
SHEN Z L. Precipitation preparation and electrochemical performance of manganese-based Prussian blue cathode for sodium ion batteries[D]. Hangzhou: Zhejiang University, 2019. | |
47 | XIE B X, WANG L G, SHU J E, et al. Understanding the structural evolution and lattice water movement for rhombohedral nickel hexacyanoferrate upon sodium migration[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46705-46713. |
48 | PENG J, ZHANG W, HU Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters, 2022, 22(3): 1302-1310. |
49 | SHEN L X, JIANG Y, JIANG Y, et al. Monoclinic bimetallic Prussian blue analog cathode with high capacity and long life for advanced sodium storage[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24332-24340. |
50 | ZHANG L L, CHEN Z Y, FU X Y, et al. Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue[J]. Chemical Engineering Journal, 2022, 433: 133739. |
51 | WEI C, FU X Y, ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal, 2021, 421: 127760. |
52 | CHEN Z S, ZHANG L L, FU X Y, et al. Synergistic modification of Fe-based Prussian blue cathode material based on structural regulation and surface engineering[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43308-43318. |
53 | LIU X Y, GONG H C, HAN C Y, et al. Barium ions act as defenders to prevent water from entering Prussian blue lattice for sodium-ion battery[J]. Energy Storage Materials, 2023, 57: 118-124. |
54 | WANG Z H, HUANG Y X, CHU D T, et al. Continuous conductive networks built by Prussian blue cubes and mesoporous carbon lead to enhanced sodium-ion storage performances[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38202-38212. |
55 | HUANG T B, NIU Y B, YANG Q J, et al. Self-template synthesis of Prussian blue analogue hollow polyhedrons as superior sodium storage cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37187-37193. |
56 | LEE S Y, PARK J Y, KIM H J, et al. Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density[J]. Journal of Alloys and Compounds, 2022, 898: 162952. |
57 | WANG X, WANG B Q, TANG Y X, et al. Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode[J]. Journal of Materials Chemistry A, 2020, 8(6): 3222-3227. |
58 | GEBERT F, CORTIE D L, BOUWER J C, et al. Epitaxial nickel ferrocyanide stabilizes Jahn-Teller distortions of manganese ferrocyanide for sodium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2021, 60(34): 18519-18526. |
59 | HU P, PENG W B, WANG B, et al. Concentration-gradient Prussian blue cathodes for Na-ion batteries[J]. ACS Energy Letters, 2020, 5(1): 100-108. |
60 | XIE B X, WANG L G, LI H F, et al. An interface-reinforced rhombohedral Prussian blue analogue in semi-solid state electrolyte for sodium-ion battery[J]. Energy Storage Materials, 2021, 36: 99-107. |
61 | XIE B X, DU Y, MA Y L, et al. Interface reinforcement of a Prussian blue cathode using a non-flammable co-solvent cresyl diphenyl phosphate for a high-safety Na-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5809-5817. |
62 | DU G Y, TAO M L, LI J E, et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode[J]. Advanced Energy Materials, 2020, 10(5): 1903351. |
63 | AO H S, CHEN C Y, HOU Z G, et al. Electrolyte solvation structure manipulation enables safe and stable aqueous sodium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(28): 14190-14197. |
[1] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[2] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[3] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[4] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[5] | Xianghua ZHANG, Wei LUO, Xianhong RUI, Yan YU. Preparation and electrochemical performance of VOPO4·2H2O nanosheet cathode for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. |
[6] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[7] | Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance [J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. |
[8] | CAO Yuliang. The opportunities and challenges of sodium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. |
[9] | LONG Xuanyou, WANG Jie, ZHAO Lina, ZHAO Hailei, WANG Kangkang, GAO Fei. Effect of chelating agent on crystal structure and sodium storage performance of Fe-based Prussian blue [J]. Energy Storage Science and Technology, 2020, 9(1): 57-64. |
[10] | QIU Shen, WU Xianyong, LU Haiyan, AI Xinping, YANG Hanxi, CAO Yuliang . Sodium storage performance of hard carbons prepared by pyrolyzing precursors with different molecular weight [J]. Energy Storage Science and Technology, 2016, 5(3): 335-340. |
[11] | NI Qiao, WU Chuan, BAI Ying, LIU Yuanchang, CHEN Guanghai, WU Feng . Na3V2(PO4)3/C cathode materials with preferred(113)orientation for sodium ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 341-348. |
[12] | CAO Yi1, WANG Yonggang2, WANG Qing1, ZHANG Zhaoyong1, CHE Yong1, XIA Yongyao2, DAI Xiang1. Development of aqueous sodium ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 317-324. |
[13] | WANG Hong, LIAO Xiaozhen, XIE Yingying, WANG Mengxue, ZHOU Guanggai, YANG Ke, KANG Shuwen, ZHAO Zhengwei, MA Zifeng. Design and investigation on portable energy storage device based on sodium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(1): 65-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||