[1] ARMAND M,TARASCON J M. Building better batteries[J]. Nature,2008,451:652-657.
[2] BRUCE D,HARESH K,JEAN-MARIE T. Electrical energy storage for the grid:A battery of choices[J]. Science,2011,334:928-935.
[3] PAN H. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ. Sci., 2013(6):2338-2360.
[4] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23(8):947-958.
[5] KUNDU D,TALAIE E,DUFFORT V,et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angew. Chem. Int. Ed. Engl.,2015,54:3431-3448.
[6] YU C Y,PARK J S,JUNG H G,et al. NaCrO2 cathode for high-rate sodium-ion batteries[J]. Energy Environ. Sci.,2015, doi: 10.1039/c5ee00695c.
[7] LI X,MA X,SU D,et al. Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2[J]. Nat. Mater., 2014,13(6):586-592.
[8] YABUUCHI N,KAJIYAMA M,IWATATE J,et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nat. Mater.,2012,11:512-517.
[9] KIM J,SEOD H,KIM H,et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy Environ. Sci.,2015,2:540-545.
[10] LEE H W,WANG R Y,PASTA M,et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nat. Commun., 2014,5:5280.
[11] SINGH P,SHIVA K,CELIO H,et al. NaFe(SO4)2:An intercalation cathode host for low-cost Na-ion batteries[J]. Energy Environ. Sci.,2015,10:3000-3005.
[12] SARAVANAN K,MASON C W,RUDOLA A,et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials,2013,3(4):444-450.
[13] AN Q,XIONG F,WEI Q,et al. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers:Superior Li storage performance and insertion/extraction mechanism[J]. Advanced Energy Materials,2015,5(10):doi:10.1002/aenm.201401963.
[14] LIM S,HAN D W,NAM D H,et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries[J]. J. Mater. Chem. A,2014,46:19623-19632.
[15] JIAN Z,HAN W,LU X,et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Advanced Energy Materials,2013,3(2):156-160.
[16] JIAN Z,ZHAO L,PAN H,et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications,2012,14(1):86-89.
[17] ZHANG L,HUANG T,YU A. Carbon-coated Na3V2(PO4)3 nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries[J]. Journal of Alloys and Compounds, 2015,646:522-527.
[18] LI S,DONG Y,XU L,et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries[J]. Adv. Mater.,2014,26(21):3545-3553.
[19] FANG Y,XIAO L,AI X,et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Adv. Mater.,2015, 27(39):5895-5900.
[20] ARAGÓN M J,LAVELA P,ORTIZ G F,et al. Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries[J]. Chem. Electro. Chem.,2015,2(7): 995-1002.
[21] ARAGON M J,LAVELA P,ORTIZ G F,et al. Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries[J]. Journal of the Electrochemical Society,2015,162(2):A3077-A3083.
[22] LALÈRE F,SEZNEC V,COURTY M,et al. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution[J]. J. Mater. Chem. A,2015,41:16198-16205.
[23] LI H,YU X,BAI Y,et al. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries[J]. J. Mater. Chem. A,2015,18:9578-9586.
[24] MAO J,LUO C,GAO T,et al. Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries[J]. J. Mater. Chem. A,2015,3:10378-10385.
[25] WANG Q,ZHAO B,ZHANG S,et al. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis[J]. J. Mater. Chem. A,2015,3:7732-7740.
[26] NIU C,MENG J,WANG X,et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nat. Commun.,2015,doi:10.1038/ncomms8402.
[27] BAI Y,WANG Z,WU C,et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Appl. Mater. Interfaces,2015, 7:5598-5604.
[28] CHEN Q,ZHANG T,QIAO X,et al. Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery[J]. Journal of Power Sources,2013,234:197-200.
[29] CROCE F. A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning[J]. Energy & Environmental Science,2011,4:921-927.
[30] ZHOU Xiaosi,DAI Zhihui,LIU Shuhu,et al. Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes[J]. Advanced Materials,2014,26(23):3943-3949.
[31] SUN Y,XIA Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2003,298:2176-2179.
[32] YANG H G,LIU G,QIAO S,et al. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001}[J]. Journal of the American Chemical Society,2009,131(11): 4078-4083.
[33] TIAN N,ZHOU Z Y,SUN S G,et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science,2007,316:732-735.
[34] LI H,BAI Y,WU F,et al. Budding willow branches shaped Na3V2(PO4)3/C nanofibers synthesized via an electrospinning technique and used as cathode material for sodium ion batteries[J]. Journal of Power Sources,2015,273:784-792.
[35] KANG E,JUNG Y S,KIM G H,et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Advanced Functional Materials,2011, 21(22):4349-4357.
[36] SONG W,JI X,WU Z,et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3[J]. Journal of Materials Chemistry A,2014,2(15):doi: 10.1039/C4TA00230J.
[37] LIU J,TANG K,SONG K,et al. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries[J]. Nanoscale,2014,6(10):5081-5086.
[38] LI H,BAI Y,WU F,et al. Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries[J]. Solid State Ionics,2015,278:281-286.