Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1253-1260.doi: 10.19799/j.cnki.2095-4239.2021.0073
• Energy Storage Materials and Devices • Previous Articles Next Articles
Rui YANG(), Lili WANG(), Yiming MI, Ye LIU, Jianbao WU, Xinxin ZHAO
Received:
2021-03-02
Revised:
2021-03-30
Online:
2021-07-05
Published:
2021-06-25
Contact:
Lili WANG
E-mail:1175765961@qq.com;llwang@sues.edu.cn
CLC Number:
Rui YANG, Lili WANG, Yiming MI, Ye LIU, Jianbao WU, Xinxin ZHAO. Research progress of transition metal oxides /C composite nanofibers fabricated by electrospinning in anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1253-1260.
Table 2
TMO / C composite electrode material prepared by electrospinning and its lithium storage capacity"
电极材料 | 电流密度/mA·g-1 | 初始充/放电比容量/mA·h·g-1 | 库仑效率 /% | 参考文献 |
---|---|---|---|---|
Porous SnOx/C nanofibers | 200 | 1057/1529 | 69.1 | [ |
Porous γ-Fe2O3/C nanofibers | 100 | 1057/1578 | 67 | [ |
Core-shell rGO-C/ZnO nanofibers | 50 | 815.25/1187.85 | 68.6 | [ |
Core-shell MnO2/C nanofibers | 50 | 1163/1906 | 61.0 | [ |
Hollow V2O3/C nanofibers | 100 | 906.3/1383.6 | 65.5 | [ |
Multi-wall Sn/SnO2@C hollow nanofibers | 1000 | 1121.5/1960.7 | 57.2 | [ |
CoxOy/C coating porous CNF | 100 | 1520/2297.8 | 66.2 | [ |
Hollow Co3O4 nanoball@porous CNF | 100 | 1003/1824 | 55.0 | [ |
Rice-panicle-like gamma-Fe2O3@C nanofibers | 200 | 1414/1956 | 72.0 | [ |
Pea-pod V2O3 yolk-shell microspheres@N, S co-doped carbon fiber | 100 | 825.2/1025.6 | 80.5 | [ |
Hollow bubble-nanord Fe2O3/C nanofibers | 500 | 957/1385 | 69.1 | [ |
1 | LIM H D, PARK J H, SHIN H J, et al. A review of challenges and issues concerning interfaces for all-solid-state batteries[J]. Energy Storage Materials, 2020, 25: 224-250. |
2 | HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: Recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. |
3 | GRUGEON S, LARUELLE S, HERRERA-URBINA R, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium[J]. Journal of the Electrochemical Society, 2001, 148(4): A285. |
4 | 吴超, 崔永丽, 庄全超, 等. 基于转化反应机制的锂离子电池电极材料研究进展[J]. 化学通报, 2011, 74(11): 1014-1025. |
WU C, CUI Y L, ZHUANG Q C, et al. Progress of electrode materials entailing conversion reaction for Li-ion batteries[J]. Chemistry, 2011, 74(11): 1014-1025. | |
5 | ZHENG M, TANG H, LI L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(3): 1700592. |
6 | JIANG J, LI Y, LIU J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Advanced Materials (Deerfield Beach, Fla), 2012, 24(38): 5166-5180. |
7 | 王苑, 韩凯, 易小艺. 基于化学储能应用的后过渡金属氧化物合成、改性[J]. 功能材料, 2019, 50(5): 5072-5082. |
WANG Y, HAN K, YI X Y. Syntheses and modifications of late transition-metal oxides based on chemical energy storage applications[J]. Journal of Functional Materials, 2019, 50(5): 5072-5082. | |
8 | ZHAO Yi, WANG Luyuan, SOUGRATI Paul, et al. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J]. Advanced Energy Materials, 2017, 7(9): 1601424. |
9 | MEI J, ZHANG Y W, LIAO T, et al. Strategies for improving the lithium-storage performance of 2D nanomaterials[J]. National Science Review, 2018, 5(3): 389-416. |
10 | 向银域, 陈婵, 肖天赐, 等. 过渡金属氧化物在锂离子电池中的应用[J]. 电源技术, 2017, 41(12): 1782-1784. |
XIANG Y Y, CHEN C, XIAO T C, et al. Application of transition metal oxide in lithium ion battery[J]. Chinese Journal of Power Sources, 2017, 41(12): 1782-1784. | |
11 | HUANG X K, CUI S M, CHANG J B, et al. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life[J]. Angewandte Chemie International Edition, 2015, 54(5): 1490-1493. |
12 | GUAN B Y, YU L, LOU X W D. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2017, 4(10): 1700247. |
13 | 金婷, 王晓君, 焦丽芳. 静电纺丝技术在二次电池和电催化领域的应用进展[J]. 中国科学: 化学, 2019, 49(5): 692-703. |
JIN T, WANG X J, JIAO L F. Recent progress in electrospinning method for secondary ion batteries and electrocatalysis[J]. Scientia Sinica (Chimica), 2019, 49(5): 692-703. | |
14 | CHENG J, JUN Y, QIN J H, et al. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications[J]. Biomaterials, 2017, 114: 121-143. |
15 | YANG T, CHEN Z, ZHANG H, et al. Multifunctional Cr2O3 quantum nanodots to improve the lithium-ion storage performance of free-standing carbon nanofiber networks[J]. Electrochimica Acta, 2016, 217: 55-61. |
16 | 奚红雪, 刘新刚, 张楚虹. 静电纺丝法制备自支撑二氧化锡/碳复合柔性电极及其在锂离子电池中的应用[J]. 高分子材料科学与工程, 2019, 35(6): 87-93. |
XI H X, LIU X G, ZHANG C H. Electro-spun free-standing flexible SnO2/carbon composite electrode for lithium-ion battery application[J]. Polymer Materials Science & Engineering, 2019, 35(6): 87-93. | |
17 | LIU Y, YAN X D, YU Y H, et al. Eco-friendly fabricated porous carbon nanofibers decorated with nanosized SnOx as high-performance lithium-ion battery anodes[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 2951-2959. |
18 | CHEN Y J, YUAN X T, YANG C, et al. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 777: 127-134. |
19 | SHILPA, BASAVARAJA B M, MAJUMDER S B, et al. Electrospun hollow glassy carbon-reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: A free standing anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(10): 5344-5351. |
20 | QU E L, CHEN T, XIAO Q Z, et al. Coaxial MnO2 Nanoshell/CNFs composite film anode for high-performance lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(3): A487-A492. |
21 | BROWN E, PARK S H, ELANGOVAN A, et al. Facilitating high-capacity V2O5 cathodes with stable two and three Li+ insertion using a hybrid membrane structure consisting of amorphous V2O5 shells coaxially deposited on electrospun carbon nanofibers[J]. Electrochimica Acta, 2018, 269: 144-154. |
22 | WANG X Y, FAN L, GONG D C, et al. Battery anodes: Core-shell Ge@Graphene@TiO2 Nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery[J]. Advanced Functional Materials, 2016, 26(7): 1143. |
23 | WANG X L, LI G, LI J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016, 9(8): 2533-2538. |
24 | ZHANG T, ZHANG L, ZHAO L, et al. Free-standing, foldable V2O3 /multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(47): e2005302. |
25 | GAO S W, WANG N, LI S, et al. A multi-wall Sn/SnO2 @Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(6): 2465-2472. |
26 | WU Q H, XU R H, ZHAO R F, et al. Tube-in-tube composite nanofibers with high electrochemistry performance in energy storage applications[J]. Energy Storage Materials, 2019, 19: 69-79. |
27 | SHIN Y M, HOHMAN M M, BRENNER M P, et al. Experimental characterization of electrospinning: The electrically forced jet and instabilities[J]. Polymer, 2001, 42(25): 09955-09967. |
28 | WANG W S, DAHL M, YIN Y D. Hollow nanocrystals through the nanoscale kirkendall effect[J]. Chemistry of Materials, 2013, 25(8): 1179-1189. |
29 | WANG X F, TANG Y H, SHI P H, et al. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 1642-1649. |
30 | ZHANG C L, LU B R, CAO F H, et al. Hierarchically structured Co3O4@carbon porous fibers derived from electrospun ZIF-67/PAN nanofibers as anodes for lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(27): 12962-12968. |
31 | 麻亚挺, 黄健, 刘翔, 等. 微纳米空心结构金属氧化物作为锂离子电池负极材料的研究进展[J]. 储能科学与技术, 2017, 6(5): 871-888. |
MA Y T, HUANG J, LIU X, et al. Hollow micro/nanostructures metal oxide as advanced anodes for lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 871-888. | |
32 | YIN L H, GAO Y J, JEON I, et al. Rice-panicle-like γ-Fe2O3@C nanofibers as high-rate anodes for superior lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 356: 60-68. |
33 | GOU W W, KONG X Z, WANG Y P, et al. Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries[J]. Chemical Engineering Journal, 2019, 374: 545-553. |
34 | CHO J S, HONG Y J, KANG Y C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries[J]. ACS Nano, 2015, 9(4): 4026-4035. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[5] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[6] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[7] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[8] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[9] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[10] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[11] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[12] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[13] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[14] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[15] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||