Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1237-1252.doi: 10.19799/j.cnki.2095-4239.2021.0274
Previous Articles Next Articles
Guanjun CEN(), Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-06-18
Online:
2021-07-05
Published:
2021-06-25
Contact:
Xuejie HUANG
E-mail:cenguanjun15@mails.ucas.ac.cn;xjhuang@jphy.ac.an
CLC Number:
Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252.
1 | WANG C, ZHANG R, KISSLINGER K, et al. Atomic-scale observation of O1 faulted phase-induced deactivation of LiNiO2 at high voltage[J]. Nano Letters, 2021, doi: 10.1021/acs.nanolett. 1c00862. |
2 | SU L, WEAVER J L, GROENENBOOM M, et al. Tailoring electrode-electrolyte interfaces in lithium-ion batteries using molecularly engineered functional polymers[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9919-9931. |
3 | SONG S, LI Y, YANG K, et al. Interplay between multiple doping elements in high-voltage LiCoO2[J]. Journal of Materials Chemistry A, 2021, 9(9): 5702-5710. |
4 | LI X, GAO A, TANG Z, et al. Robust surface reconstruction induced by subsurface Ni/Li antisites in Ni-rich cathodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010291. |
5 | LIU M, REN Z, WANG D, et al. Addressing unfavorable influence of particle cracking with a strengthened shell layer in Ni-rich cathodes[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c05535. |
6 | ZHANG X, QIU Y, CHENG F, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17707-17716. |
7 | FANTIN R, TREVISANELLO E, RUESS R, et al. Synthesis and postprocessing of single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state lithium-ion batteries with high capacity and long cycling stability[J]. Chemistry of Materials, 2021, 33(7): 2624-2634. |
8 | GAO C, LIU H, BI S, et al. Insights for the new function of N,N-dimethylpyrrolidone in preparation of a high-voltage spinel LiNi0.5Mn1.5O4 cathode[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c01283. |
9 | VASQUEZ F A, ROSERO-NAVARRO N C, MIURA A, et al. Kinetic control of the Li0.9Mn1.6Ni0.4O4 spinel structure with enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14056-14067. |
10 | SANDARUWAN R D L, CONG L, MA L, et al. Tackling the interfacial issues of spinel LiNi0.5Mn1.5O4 by roomtemperature spontaneous dediazonation reaction[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13264-13272. |
11 | WANG R, CHEN X, HUANG Z, et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials[J]. Nature Communications, 2021, 12(1): 3085-3085. |
12 | LUO D, ZHENG L, ZHANG Z, et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries[J]. Nature Communications, 2021, doi:10.1038/s41467-020-20339-1 . |
13 | HAN B, ZHANG Z, ZOU Y, et al. Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy[J]. Advanced Materials, 2021, doi: 10.1002/adma.202100404. |
14 | MAY R, FRITZSCHING K J, LIVITZ D, et al. Rapid interfacial exchange of Li ions dictates high coulombic efficiency in Li metal anodes[J]. ACS Energy Letters, 2021, 6(4): 1162-1169. |
15 | HUANG K, BI S, KURT B, et al. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium metal battery[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202104671. |
16 | JIN C, LIU T, SHENG O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387. |
17 | CHEN J, LIU T, GAO L, et al. Tuning the solution structure of electrolyte for optimal solid-electrolyte-interphase formation in high-voltage lithium metal batteries[J]. Journal of Energy Chemistry, 2021, doi: 10.1016/j.jechem.2021.01.007. |
18 | CHEN M, MA C, DING Z, et al. Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries[J]. ACS Energy Letters, 2021, 6(4): 1280-1289. |
19 | PHAM T D, LEE K K. Simultaneous stabilization of the solid/cathode electrolyte interface in lithium metal batteries by a new weakly solvating electrolyte[J]. Small, 2021, doi: 10.1002/smll. 202100133. |
20 | BAEK S H, JEONG Y M, SHIN S C, et al. Tunable solid electrolyte interphase formation on SiO anodes using SnO artificial layers for lithium-ion batteries[J]. Applied Surface Science, 2021, doi:10.1016/j.apsusc.2021.149028 . |
21 | CHANG C B, TSAI C Y, CHEN K T, et al. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode[J]. ACS Applied Energy Materials, 2021, 4(4): 3160-3168. |
22 | LI Y, QIAN Y, ZHOU J, et al. Molten-LiCl induced thermochemical prelithiation of SiOx: Regulating the active Si/O ratio for high initial coulombic efficiency[J]. Nano Research, 2021, doi: 10.1007/s12274-021-3464-2. |
23 | WANG H, MIAO M, LI H, et al. Insitu-formed artificial solid electrolyte interphase for boosting the cycle stability of Si-based anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22505-22513. |
24 | LEE H A, SHIN M, KIM J, et al. Designing adaptive binders for microenvironment settings of silicon anode particles[J]. Advanced Materials, 2021, doi:10.1002/adma.202007460 . |
25 | WU S, YANG Y, LIU C, et al. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries[J]. ACS Energy Letters, 2021, 6(1): 290-297. |
26 | DENG L, DENG S S, PAN S Y, et al. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22567-22576. |
27 | ZHANG Y, HUANG J, LIAO Z, et al. Natural self-confined structure effectively suppressing volume expansion toward advanced lithium storage[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c02269. |
28 | YARMOLICH D, ODARCHENKO Y, MURPHY C, et al. Novel binder-free carbon anode for high capacity Li-ion batteries[J]. Nano Energy, 2021, doi: 10.1016/j.nanoen.2021.105816. |
29 | TSENG Y C, HSIANG S H, TSAO C H, et al. In situ formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(9): 5796-5806. |
30 | CHO Y-G, JUNG S H, JEONG J, et al. Metal-ion chelating gel polymer electrolyte for Ni-rich layered cathode materials at a high voltage and an elevated temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9965-9974. |
31 | FU C, MA Y, ZUO P, et al. In-situ thermal polymerization boosts succinonitrile-based composite solid-state electrolyte for high performance Li-metal battery[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229861. |
32 | WANG Y, ZANELOTTI C J, WANG X, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, doi: 10.1038/s41563-021-00995-4. |
33 | TAKAHASHI M, YANG S, YAMAMOTO K, et al. Improvement of lithium ionic conductivity of Li3PS4 through suppression of crystallization using low-boiling-point solvent in liquid-phase synthesis[J]. Solid State Ionics, 2021, doi: 10.1016/j.ssi.2021.115568. |
34 | CALPA M, ROSERO-NAVARRO N C, MIURA A, et al. Chemical stability of Li4PS4I solid electrolyte against hydrolysis[J]. Applied Materials Today, 2021, doi: 10.1002/cssc.202100526. |
35 | WU L, LIU G, WAN H, et al. Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229565. |
36 | PATEL S V, BANERJEE S, LIU H, et al. Tunable lithium-ion transport in mixed-halide argyrodites Li6-xPS5-xClBrx: An unusual compositional space[J]. Chemistry of Materials, 2021, 33(4): 1435-1443. |
37 | LIU K, LI X, CAI J, et al. Design of high-voltage stable hybrid electrolyte with an ultrahigh Li transference number[J]. ACS Energy Letters, 2021, 6(4): 1315-1323. |
38 | CHEN W-P, DUAN H, SHI J-L, et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J]. Journal of the American Chemical Society, 2021, 143(15): 5717-5726. |
39 | LI X, GUO L, LI J, et al. Reversible cycling of graphite electrodes in propylene carbonate electrolytes enabled by ethyl isothiocyanate[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami. 1c04607. |
40 | TAN S, RODRIGO U N D, SHADIKE Z, et al. Novel low-temperature electrolyte using isoxazole as the main solvent for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c05894. |
41 | ZHANG K, TIAN Y, WEI C, et al. Building stable solid electrolyte interphases (SEI) for microsized silicon anode and 5V-class cathode with salt engineered nonflammable phosphate-based lithium-ion battery electrolyte[J]. Applied Surface Science, 2021, doi: 10.1016/j.apsusc.2021.149566. |
42 | BEZABH H K, CHIU S-F, HAGOS T M, et al. Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229760. |
43 | DOI T, TACCORI R J, FUJII R, et al. Non-flammable and highly concentrated carbonate ester-free electrolyte solutions for 5V-class positive electrodes in lithium-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100523. |
44 | ZHAO M, XU G, LU D, et al. Formulating a non-flammable highly concentrated dual-salt electrolyte for wide temperature high-nickel lithium ion batteries[J]. Journal of the Electrochemical Society, 2021, doi: 10.1149/1945-7111/abfb39. |
45 | XUE W, HUANG M, LI Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00792-y. |
46 | DING J-F, XU R, YAO N, et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202101627. |
47 | NIKIFORIDIS G, RAGHIBI M, SAYEGH A, et al. Low-concentrated lithium hexafluorophosphate ternary-based electrolyte for a reliable and safe NMC/graphite lithium-ion battery[J]. Journal of Physical Chemistry Letters, 2021, 12(7): 1911-1917. |
48 | LI Y, AN Y, TIAN Y, et al. High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10141-10148. |
49 | LIU X, SHEN X, LI H, et al. Ethylene carbonate-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003905. |
50 | TAN C, YANG J, PAN Q, et al. Optimizing interphase structure to enhance electrochemical performance of high voltage LiNi0.5Mn1.5O4 cathode via anhydride additives[J]. Chemical Engineering Journal, 2021, doi: 10.1016/j.cej.2021.128422. |
51 | JIANG S, WU H, YIN J, et al. Benzoic anhydride as a bifunctional electrolyte additive for hydrogen fluoride capture and robust film construction over high-voltage Li-ion batteries[J]. Chemsuschem, 2021, 14(9): 2067-2075. |
52 | IM J, AHN J, CHOI H, et al. A dual-function sulfite-type additive for long cycle life in high-voltage lithium metal batteries[J]. Journal of Alloys and Compounds, 2021, doi: 10.1016/j.jallcom.2021.159662. |
53 | LIU G, XU N, ZOU Y, et al. Stabilizing Ni-rich LiNi0.83Co0.12Mn0.05O2 with cyclopentyl isocyanate as a novel electrolyte additive[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12069-12078. |
54 | ZOU Y, ZHOU K, LIU G, et al. Enhanced cycle life and rate capability of single-crystal, Ni-rich LiNi0.9Co0.05Mn0.05O2 enabled by 1,2,4-1H-triazole additive[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16427-16436. |
55 | PHAM H Q, NGUYEN M T, TARIK M, et al. Cross-talk-suppressing electrolyte additive enabling high voltage performance of Ni-rich layered oxides in Li-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100511. |
56 | LI S, LI C, YANG T, et al. 3,3-diethylene Di-sulfite (DES) as a high-voltage electrolyte additive for 4.5V LiNi0.8Co0.1Mn0.1O2/graphite batteries with enhanced performances[J]. Chemelectrochem, 2021, 8(4): 745-754. |
57 | JIA H, XU Y, ZHANG X, et al. Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202102403. |
58 | CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. |
59 | ZHANG L, ZUO X, ZHU T, et al. 1-(p-Toluenesulfonyl)imidazole (PTSI) as the novel bifunctional electrolyte for LiCoO2-based cells with improved performance at high voltage[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229596. |
60 | LIAO X Q, LI F, ZHANG C M, et al. Improving the stability of high-voltage lithium cobalt oxide with a multifunctional electrolyte additive: Interfacial analyses[J]. Nanomaterials, 2021, doi: 10.3390/nano11030609. |
61 | DENG W, DAI W, ZHOU X, et al. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 W·h·kg-1 lithium metal battery[J]. ACS Energy Letters, 2021, 6(1): 115-123. |
62 | LI H, LIAN F, MENG N, et al. Constructing electronic and ionic dual conductive polymeric interface in the cathode for high-energy-density solid-state batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202008487. |
63 | LI X, CONG L, MA S, et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010611. |
64 | ALZAHRANI A S, OTAKI M, WANG D, et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 413-418. |
65 | LI M, LIU T, SHI Z, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma.202008723. |
66 | HUO H, GAO J, ZHAO N, et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nature Communications, 2021, doi: 10.1038/s41467-020-20463-y. |
67 | ZHANG S, ZENG Z, ZHAI W, et al. Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, doi: 10.1002/admi.202100072. |
68 | WAN H, LIU S, DENG T, et al. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery[J]. ACS Energy Letters, 2021, 6(3): 862-868. |
69 | LI C, CHEN Y, LI Z, et al. Construction of sticky ionic conductive buffer layer for inorganic electrolyte toward stable all-solid-state lithium metal batteries[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229765. |
70 | LIU G, SHI J, ZHU M, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, doi: 10.1016/j.ensm.2021.03.017. |
71 | CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li-air battery[J]. Nature, 2021, 592(7855): 551-557. |
72 | LI J, WANG Z, YANG L, et al. A flexible Li-air battery workable under harsh conditions based on an integrated structure: A composite lithium anode encased in a gel electrolyte[J].ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.0c22783. |
73 | JIN Z, LIN T, JIA H, et al. Expediting the conversion of Li2S2 to Li2S enables high-performance Li-S batteries[J]. ACS Nano, 2021, doi: 10.1021/acsnano.1c00556. |
74 | LIU Y T, WANG L, LIU S, et al. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery[J]. Science China-Materials, 2021, 64(6): 1343-1354. |
75 | HE J, BHARGAV A, MANTHIRAM A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts[J].ACS Nano, 2021, doi: 10.1021/acsnano.1c00446. |
76 | WANG X, YANG Y, LAI C, et al. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202016240. |
77 | GUPTA A, BHARGAV A, MANTHIRAM A. Evoking high-donor-number-assisted and organosulfur-mediated conversion in lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(1): 224-231. |
78 | WANG Y, MENG Y, ZHANG Z, et al. Trifunctional electrolyte additive hexadecyltrioctylammonium iodide for lithium-sulfur batteries with extended cycle life[J].ACS Applied Materials & Interfaces, 2021, 13(14): 16545-16557. |
79 | FENG J, YI H, LEI Z, et al. A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li-S batteries[J]. Journal of Energy Chemistry, 2021, doi: 10.1016/j.jechem.2020.07.060. |
80 | CHEN K, FANG R, LIAN Z, et al. An in-situ solidification strategy to block polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials, 2021, doi: 10.1016/j.ensm.2021.02.012. |
81 | CHEN Q, GUO W, WANG D, et al. A self-healing Li-S redox flow battery with alternative reaction pathways[J]. Journal of Materials Chemistry A, 2021, doi: 10.1039/d1ta01973b. |
82 | ZHANG X Q, JIN Q, NAN Y, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie (International ed. in English), 2021, doi: 10.1002/anie.202103470. |
83 | GUO L, XIN C, GAO J, et al. The electrolysis of anti-perovskite Li2OHCl for prelithiation of high-energy-density batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202102605. |
84 | FU A, WANG C, PENG J, et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009805. |
85 | BARAN M J, CARRINGTON M E, SAHU S, et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages[J]. Nature, 2021, doi: 10.1038/s41586-021-03377-7. |
86 | PRIMO E N, CHOUCHANE M, TOUZIN M, et al. Understanding the calendering processability of Li(Ni0.33Mn0.33Co0.33)O2-based cathodes[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2020.229361. |
87 | JEON D H. Enhancing electrode wettability in lithium-ion battery via particle-size ratio control[J]. Applied Materials Today, 2021, doi: 10.1016/j.apmt.2021.100976. |
88 | BLAUBAUM L, ROSE P, SCHMIDT L, et al. The effects of gas-saturation of electrolytes on the performance and durability of lithium-ion batteries[J]. Chemsuschem, 2021, doi: 10.1002/cssc.202100845. |
89 | LU Z, YANG Z, LI C, et al. Modulating nanoinhomogeneity at electrode-solid electrolyte interfaces for dendrite-proof solid-state batteries and long-life memristors[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003811. |
90 | EZZEDINE M, ZAMFIR M R, JARDALI F, et al. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, doi: 10.1021/acsami.1c03302. |
91 | KROLL M, KARSTENS S L, CRONAU M, et al. Three-phase reconstruction reveals how the microscopic structure of the carbon-binder domain affects ion transport in lithium-ion batteries[J]. Batteries & Supercaps, 2021, doi: 10.1002/batt.202100057. |
92 | HABER S, ROSY, SAHA A, et al. Structure and functionality of an alkylated LixSiyOz interphase for high-energy cathodes from DNP-ssNMR spectroscopy[J]. Journal of the American Chemical Society, 2021, 143(12): 4694-4704. |
93 | YAMAGISHI Y, MORITA H, NOMURA Y, et al. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 580-586. |
94 | LAIN M J, KENDRICK E. Understanding the limitations of lithium ion batteries at high rates[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2021.229690. |
95 | CHEN F, CHENG S, LIU J B, et al. Insights into the electrochemical stability and lithium conductivity of Li4MS4 (M=Si, Ge, and Sn)[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22438-22447. |
96 | LYTLE T K, MURALIDHARAN A, YETHIRAJ A. Why lithium ions stick to some anions and not others[J]. The Journal of Physical Chemistry B, 2021, 125(17): 4447-4455. |
97 | MA J, QUHE R, ZHANG Z, et al. Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li10GeP2S12 in lithium metal batteries[J]. Journal of Materials Chemistry A, 2021, 9(8): 4810-4821. |
98 | SHISHVAN S S, FLECK N A, DESHPANDE V S. The initiation of void growth during stripping of Li electrodes in solid electrolyte cells[J]. Journal of Power Sources, 2021, doi: 10.1016/j.jpowsour.2020.229437. |
99 | PARK H, YU S, SIEGEL D J. Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Letters, 2021, 6(1): 150-157. |
100 | NING Z, JOLLY D S, LI G, et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells[J]. Nature Materials, 2021, doi: 10.1038/s41563-021-00967-8. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[10] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||