Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1219-1236.doi: 10.19799/j.cnki.2095-4239.2021.0042
• Special Review • Previous Articles Next Articles
Chengzhi KE1(), Bensheng XIAO1, Miao LI1, Jingyu LU3, Yang HE4, Li ZHANG2, Qiaobao ZHANG1()
Received:
2021-01-28
Revised:
2021-02-23
Online:
2021-07-05
Published:
2021-06-25
Contact:
Qiaobao ZHANG
E-mail:kechengzhiah@163.com;zhangqiaobao@xmu.edu.cn
CLC Number:
Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236.
1 | 缪平, 姚祯, LEMMON J, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678.MIAO P, YAO Z, LEMMON J, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. |
2 | ZHONG S Y, SHI J, LUO W W, et al. First-principles insight into Li and Na ion storage in graphene oxide[J]. Chinese Physics B, 2019, 28(7): 591-597. |
3 | ZHAO L Z, WU H H, YANG C H, et al. Mechanistic origin of the high performance of Yolk@Shell Bi2S3@N-doped carbon nanowire electrodes[J]. ACS Nano, 2018, 12(12): 12597-12611. |
4 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
5 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 153-180.ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 153-180. |
6 | TRIPATHI A M, SU W N, HWANG B J. In situ analytical techniques for battery interface analysis[J]. Chemical Society Reviews, 2018, 47(3): 736-851. |
7 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
8 | 岳昕阳, 马萃, 包戬, 等. 金属锂负极失效机制及其先进表征技术[J]. 物理化学学报, 2021, 37(2): 8-29.YUE X Y, MA C, BAO J, et al. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Physico Chimica Sinica, 2021, 37(2): 8-29. |
9 | 拱越, 谷林. 全固态电池中界面的结构演化和物质输运[J]. 物理学报, 2020, 69(22): 57-64.GONG Y, Gu L. Structural evolution and matter transportation of the interface in all-solid-state battery[J]. Acta Physica Sinica, 2020, 69(22): 57-64. |
10 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928-935. |
11 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
12 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
13 | XIANG Y X, LI X, CHENG Y Q, et al. Advanced characterization techniques for solid state lithium battery research[J]. Materials Today, 2020, 36: 139-157. |
14 | WANG Z Y, SANTHANAGOPALAN D, ZHANG W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3766. |
15 | LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 3844-3860. |
16 | WU X Y, LI S M, YANG B, et al. In situ transmission electron microscopy studies of electrochemical reaction mechanisms in rechargeable batteries[J]. Electrochemical Energy Reviews, 2019, 2(3): 467-491. |
17 | CHENG Y, ZHANG L Q, ZHANG Q B, et al. Understanding all solid-state lithium batteries through in situ transmission electron microscopy[J]. Materials Today, 2020, 42: 137-161. |
18 | 徐涛, 孙俊, 孙立涛. 原位动态电子显微学研究进展[J]. 物理学进展, 2012, 32(3): 115-134.XU T, SUN J, SUN L T. Progress in dynamic in situ electron microscopy[J]. Progress in Physics, 2012, 32(3): 115-134. |
19 | ZHANG C, FIRESTEIN K L, FERNANDO J F S, et al. Recent progress of in situ transmission electron microscopy for energy materials[J]. Advanced Materials, 2020, 32(18): e1904094. |
20 | HOLTZ M E, YU Y C, GUNCELER D, et al. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte[J]. Nano Letters, 2014, 14(3): 1453-1459. |
21 | LIU X H, LIU Y, KUSHIMA A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures[J]. Advanced Energy Materials, 2012, 2(7): 722-741. |
22 | MA X Y, LUO W, YAN M Y, et al. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices[J]. Nano Energy, 2016, 24: 165-188. |
23 | 赵一博, 刘蕙蕙, 陈松良, 等. 先进成像技术在全固态锂电池关键问题研究中的应用[J]. 电化学, 2019, 25(1): 17-30.ZHAO Y B, LIU H H, CHEN S L, et al. Applications of advanced imaging technologies for critical issues of all-solid-state lithium battery studies[J]. Journal of Electrochemistry, 2019, 25(1): 17-30. |
24 | 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667.LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries (Ⅻ)-Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. |
25 | LEE H W, LI Y Z, CUI Y. Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes[J]. Current Opinion in Chemical Engineering, 2016, 12: 37-43. |
26 | QI K, WEI J K, SUN M H, et al. Real-time observation of deep lithiation of tungsten oxide nanowires by in situ electron microscopy[J]. Angewandte Chemie International Edition, 2015, 54(50): 15222-15225. |
27 | LI J, JOHNSON G, ZHANG S, et al. In situ transmission electron microscopy for energy applications[J]. Joule, 2019, 3(1): 4-8. |
28 | 苏庆梅, 杜高辉, 郭俊杰, 等. 原位透射电镜技术在电化学储能领域的研究进展[J]. 中国材料进展, 2020, 39(Z1): 559-575+557-558.SU Q M, DU G H, GUO J J, et al. Recent progress of in situ transmission electron microscopy on electrochemical energy storage[J]. Materials China, 2020, 39(Z1): 559-575+557-558. |
29 | YANG J, MUHAMMAD S, JO M R, et al. In situ analyses for ion storage materials[J]. Chemical Society Reviews, 2016, 45(20): 5717-5770. |
30 | LIU N, LU Z D, ZHAO J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9(3): 187-192. |
31 | 拱越, 谷林. 锂离子电池材料的电子显微学分析方法[J]. 储能科学与技术, 2019, 8(6): 1260-1270.GONG Y, GU L. Transmission electron microscopy of lithium ion battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1260-1270. |
32 | 张利强, 唐永福, 刘秋男, 等. 原位透射电镜技术在电池领域的研究进展[J]. 储能科学与技术, 2019, 8(6): 1050-1061.ZHANG L Q, TANG Y F, LIU Q N, et al. Review of in situ transmission electron microscopy studies of battery materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1050-1061. |
33 | YUAN Y F, AMINE K, LU J, et al. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy[J]. Nature Communications, 2017, 8(1): 15806. |
34 | WANG Y, CAO G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269. |
35 | REIMERS J N, DAHN J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2[J]. Journal of the Electrochemical Society, 1992, 139(8): 2091. |
36 | 蓝兹炜, 张建茹, 李园园, 等. 基于锂离子电池正极材料的一元/二元复合正极材料研究进展[J]. 储能科学与技术, 2021, 10(1): 27-39.LAN Z W, ZHANG J R, LI Y Y, et al. Research progress of mono/binary composite cathode materials based on lithium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2021, 10(1): 27-39. |
37 | GONG Y, ZHANG J N, JIANG L W, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery[J]. Journal of the American Chemical Society, 2017, 139(12): 4274-4277. |
38 | YANG Z Z, ONG P V, HE Y, et al. Direct visualization of Li dendrite effect on LiCoO2 cathode by in situ TEM[J]. Small, 2018, 14(52): e1803108. |
39 | 李文俊, 郑杰允, 谷林, 等. 锂电池原位与非原位表征技术研究[J]. 电化学, 2015, 21(2): 99-114.LI W J, ZHENG J Y, GU L, et al. Researches on in-situ and ex-situ characterization techniques in lithium batteries[J]. Journal of Electrochemistry, 2015, 21(2): 99-114. |
40 | SHU J, SHUI M, HUANG F T, et al. A new look at lithium cobalt oxide in a broad voltage range for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2010, 114(7): 3323-3328. |
41 | WEKER J N, WISE A M, LIM K, et al. Operando spectroscopic microscopy of LiCoO2 cathodes outside standard operating potentials[J]. Electrochimica Acta, 2017, 247: 977-982. |
42 | ZHU Y J, WANG J W, LIU Y, et al. In situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation[J]. Advanced Materials, 2013, 25(38): 5461-5466. |
43 | NIU J J, KUSHIMA A, QIAN X F, et al. In situ observation of random solid solution zone in LiFePO4 electrode[J]. Nano Letters, 2014, 14(7): 4005-4010. |
44 | LI S, YAO Z P, ZHENG J M, et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode[J]. Angewandte Chemie International Edition, 2020, 59(49): 22092-22099. |
45 | GONG Y, CHEN Y Y, ZHANG Q H, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery[J]. Nature Communications, 2018, 9(1): 3341. |
46 | 麦立强, 陈丹丹, 赵康宁, 等. 纳米线电化学储能材料与器件[J]. 科学通报, 2013, 58(32): 3312-3327.MAI L Q, CHEN D D, ZHAO K N, et al. Nanowire device for electrochemical energy storage[J]. Chinese Science Bulletin, 2013, 58(32): 3312-3327. |
47 | 余晨露, 田晓华, 郑瀚, 等. 高稳定性硅/硬碳复合负极在锂电负极中的应用[J]. 储能科学与技术, 2021, 10(1): 128-136.YU C L, TIAN X H, ZHANG H, et al. Research progress in high stability of silicon/hard carbon anodes for LIBs[J]. Energy Storage Science and Technology, 2021, 10(1): 128-136. |
48 | ZHENG Z, WU H H, CHEN H, et al. Fabrication and understanding of Cu3Si-Si@carbon@graphene nanocomposites as high-performance anodes for lithium-ion batteries[J]. Nanoscale, 2018, 10(47): 22203-22214. |
49 | HE Y, PIPER D M, GU M, et al. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries[J]. ACS Nano, 2014, 8(11): 11816-23. |
50 | WANG J W, HE Y, FAN F F, et al. Two-phase electrochemical lithiation in amorphous silicon[J]. Nano Letters, 2013, 13(2): 709-15. |
51 | GU M, LI Y, LI X L, et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano, 2012, 6(9): 8439-8447. |
52 | MCDOWELL M T, LEE S W, WANG C M, et al. The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation[J]. Nano Energy, 2012, 1(3): 401-410. |
53 | WANG X J, FAN F F, WANG J W, et al. High damage tolerance of electrochemically lithiated silicon[J]. Nature Communications, 2015, 6: 8417. |
54 | GHASSEMI H, AU M, CHEN N, et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods[J]. ACS Nano, 2011, 5(10): 7805-7811. |
55 | LEE S W, MCDOWELL M T, CHOI J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7): 3034-3039. |
56 | LIU X H, ZHENG H, ZHONG L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation[J]. Nano Letters, 2011, 11(8): 3312-3318. |
57 | LIU X H, WANG J W, HUANG S, et al. In situ atomic-scale imaging of electrochemical lithiation in silicon[J]. Nature Nanotechnology, 2012, 7(11): 749-56. |
58 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-31. |
59 | WANG J W, LIU X H, ZHAO K, et al. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers[J]. ACS Nano, 2012, 6(10): 9158-67. |
60 | ZHANG Q B, CHEN H X, LUO L L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3): 669-681. |
61 | WANG H K, YANG X M, WU Q Z, et al. Encapsulating silica/antimony into porous electrospun carbon nanofibers with robust structure stability for high-efficiency lithium storage[J]. ACS Nano, 2018, 12(4): 3406-3416. |
62 | WANG C M, LI X L, WANG Z G, et al. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries[J]. Nano Letters, 2012, 12(3): 1624-1632. |
63 | SON I H, HWAN PARK J, KWON S, et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density[J]. Nature Communications, 2015, 6: 7393. |
64 | LI Y Z, YAN K, LEE H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy, 2016, 1(2): 15029. |
65 | AN W L, GAO B, MEI S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1447. |
66 | LU Z D, LIU N, LEE H W, et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes[J]. ACS Nano, 2015, 9(3): 2540-2547. |
67 | LIU X H, HUANG S, PICRAUX S T, et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study[J]. Nano Letters, 2011, 11(9): 3991-3997. |
68 | BOEBINGER M G, YAREMA O, YAREMA M, et al. Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling[J]. Nature Nanotechnology, 2020, 15(6): 475-481. |
69 | LI Y Y, OU C Z, ZHU J L, et al. Ultrahigh and durable volumetric lithium/sodium storage enabled by a highly dense graphene-encapsulated nitrogen-doped carbon@Sn compact monolith[J]. Nano Letters, 2020, 20(3): 2034-2046. |
70 | LIANG W T, HONG L, YANG H, et al. Nanovoid formation and annihilation in gallium nanodroplets under lithiation-delithiation cycling[J]. Nano Letters, 2013, 13(11): 5212-5217. |
71 | SU Q M, XIE D, ZHANG J, et al. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes[J]. ACS Nano, 2013, 7(10): 9115-9121. |
72 | YU W J, ZHANG L L, HOU P X, et al. High reversible lithium storage capacity and structural changes of Fe2O3 nanoparticles confined inside carbon nanotubes[J]. Advanced Energy Materials, 2016, 6(3): 1501755. |
73 | ZHENG Z M, LI P, HUANG J, et al. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design[J]. Journal of Energy Chemistry, 2020, 41: 126-134. |
74 | ZHENG Z M, WU H H, LIU H D, et al. Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets[J]. ACS Nano, 2020, 14(8): 9545-9561. |
75 | HE K, ZHANG S, LI J, et al. Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy[J]. Nature Communications, 2016, 7: 11441. |
76 | LI J, HWANG S, GUO F M, et al. Phase evolution of conversion-type electrode for lithium ion batteries[J]. Nature Communications, 2019, 10(1): 2224. |
77 | WANG X, TANG D M, LI H Q, et al. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy[J]. Chemical Communications, 2012, 48(40): 4812-4814. |
78 | LI J, HE K, MENG Q Q, et al. Kinetic phase evolution of spinel cobalt oxide during lithiation[J]. ACS Nano, 2016, 10(10): 9577-9585. |
79 | HE K, LIN F, ZHU Y Z, et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation[J]. Nano Letters, 2015, 15(9): 5755-5763. |
80 | GREGORCZYK K E, LIU Y, SULLIVAN J P, et al. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2[J]. ACS Nano, 2013, 7(7): 6354-6360. |
81 | CHEN K J, CAO K, XING C C, et al. In-situ TEM study of the lithiation and delithiation of FeS nanosheets[J]. Journal of Alloys and Compounds, 2016, 688: 946-952. |
82 | SU Q M, XIE J, ZHANG J, et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2014, 6(4): 3016-3022. |
83 | HE Y, GU M, XIAO H Y, et al. Atomistic conversion reaction mechanism of WO3 in secondary ion batteries of Li, Na, and Ca[J]. Angewandte Chemie International Edition, 2016, 55(21): 6244-6247. |
[1] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[2] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[3] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[4] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[5] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[6] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[7] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[8] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[9] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[10] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[11] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[12] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[13] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[14] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
[15] | LIU Xingwen, HE Jinxin, WANG Hailin, JIN Chengyou, MIAO Yonghua, XUE Chi. Preparation and electrochemical performance of F-doped SiO@C composite material [J]. Energy Storage Science and Technology, 2019, 8(S1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||