Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1474-1486.doi: 10.19799/j.cnki.2095-4239.2023.0895
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yiwei ZHAO(), Fuhua ZHANG(), Shun YAN, Kun DING, Haifeng LAN, Hui LIU
Received:
2023-12-12
Revised:
2024-01-01
Online:
2024-05-28
Published:
2024-05-28
Contact:
Fuhua ZHANG
E-mail:2157798125@qq.com;fhzhang@shmtu.edu.cn
CLC Number:
Yiwei ZHAO, Fuhua ZHANG, Shun YAN, Kun DING, Haifeng LAN, Hui LIU. Research progress on the conductivity of Prussian blue sodium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2024, 13(5): 1474-1486.
Fig. 9
FE-SEM images of (a) porous NFF and (d) porous NFF@PDA; (b)Transmission electron microscope images of porous NFF and (e) porous NFF@PDA; (c) HRTEM images of porous NFF and (f) NFF@PDA; (g) Schematic diagram of the synthesis process of porous NFF@PDA; (h) Cyclic properties of porous NFF and porous NFF@PDA at 0.2 A/g; (i) Magnification properties of porous NFF and porous NFF NFF@PDA[43]"
Table 1
Electrochemical performance of Prussian blue cathode materials for sodium-ion batteries"
Samples | Cyclability/(cycles,retention%@mA/g) | Rata capacity/(mAh/g@mA/g) | Refs |
---|---|---|---|
Na1.81Fe[Fe(CN)6]0.83·2.04H2O | 3700,79.7%@700 | 77@1400 | [ |
Na1.70Fe2.15(CN)6 | 500,63.4%@85 | 75@850 | [ |
Na1.58Fe[Fe(CN)6]0.87·2.38H2O | 3000,64.9%@750 | 90.6@1500 | [ |
Na1.76FeFe(CN)6 | 2000,82.5%@500 | 80@2000 | [ |
Na1.11NiFe(CN)6·0.71H2O | 5000,83.2%@500 | 70.9@4000 | [ |
Na1.38Ni0.07Mn0.93[Fe(CN)6]0.82·□0.18·1.4H2O | 600,82.3%@50 | 52@3200 | [ |
(K0.47Fe4 [Fe(CN)6]3.14)@(MoSO1.7)0.44·18H2O | 10000,98%@10000 | 85@10000 | [ |
Na0.647Fe[Fe(CN)6]0.93·□0.07·2.6H2O | 2000,90%@2000 | 77.5@9000 | [ |
PBGO | 800,91.3%@500 | 68.0@4000 | [ |
PB@PANI | 500,93.4%@100 | 102.5@1000 | [ |
NaFeFe(CN)6@Ti3C2T x | 1000,69.7%@1000 | 92.0@1000 | [ |
Na1.6Mn[Fe(CN)6]0.9@Na3(VOPO4)2F | 500,84.3%@100 | 91.4@1000 | [ |
Na1.36FeFe(CN)6@PDA | 500,77.4%@200 | 72.6@5000 | [ |
1 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
2 | FANG Y J, CHEN Z X, XIAO L F, et al. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J]. Small, 2018, 14(9): 10.1002/smll.201703116. |
3 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619. |
4 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
5 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Y S, RONG X H, XU S Y, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
6 | ESTELRICH J, BUSQUETS M A. Prussian blue: A nanozyme with versatile catalytic properties[J]. International Journal of Molecular Sciences, 2021, 22(11): 5993. |
7 | WANG B Q, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. |
8 | GAO Y T, HUANG Y, PAN H G, et al. Towards defect-free Prussian blue-based battery electrodes[J]. Journal of Alloys and Compounds, 2023, 950: 169886. |
9 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248. |
10 | KEVIN H, SAMUEL W, ISAAC C, et al. Prussian blue analogs as battery materials[J]. ECS Meeting Abstracts, 2022, 2(59):2210-2210. |
11 | YAN C X, ZHAO A L, ZHONG F P, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimica Acta, 2020, 332: 135533. |
12 | PENG F W, YU L, GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(39): 22248-22256. |
13 | XU Y, WAN J, HUANG L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158. |
14 | WANG L, SONG J, QIAO R M, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. |
15 | MING H, TORAD N L K, CHIANG Y D, et al. Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process[J]. CrystEngComm, 2012, 14(10): 3387. |
16 | YOU Y, WU X L, YIN Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647. |
17 | LIM C Q X, WANG T, ONG E W Y, et al. High-capacity sodium–prussian blue rechargeable battery through chelation-induced nano-porosity[J]. Advanced Materials Interfaces, 2020, 7(21): 2000853. |
18 | PIERNAS-MUÑOZ M J, CASTILLO-MARTÍNEZ E, BONDARCHUK O, et al. Higher voltage plateau cubic Prussian White for Na-ion batteries[J]. Journal of Power Sources, 2016, 324: 766-773. |
19 | SU D W, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1): 1604007-1604015. |
20 | PENG J, ZHANG W, HU Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters, 2022, 22(3): 1302-1310. |
21 | PENG J, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2- xMnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(32): e202205867. |
22 | WANG W L, GANG Y, PENG J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(25): 2111727. |
23 | WANG J, LI L, ZUO S L, et al. Synchronous crystal growth and etching optimization of Prussian blue from a single iron-source as high-rate cathode for sodium-ion batteries[J]. Electrochimica Acta, 2020, 341: 136057. |
24 | HAN J J, HU Y N, HAN Q H, et al. Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure[J]. Journal of Alloys and Compounds, 2023, 950: 169928. |
25 | REN W H, QIN M S, ZHU Z X, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching[J]. Nano Letters, 2017, 17(8): 4713-4718. |
26 | HUANG Y X, XIE M, WANG Z H, et al. A chemical precipitation method preparing hollow-core-shell heterostructures based on the Prussian blue analogs as cathode for sodium-ion batteries[J]. Small, 2018, 14(28): e1801246. |
27 | WANG J G, ZHANG Z Y, ZHANG X Y, et al. Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors[J]. Nano Energy, 2017, 39: 647-653. |
28 | FU H Y, XIA M Y, QI R J, et al. Improved rate performance of Prussian blue cathode materials for sodium ion batteries induced by ion-conductive solid-electrolyte interphase layer[J]. Journal of Power Sources, 2018, 399: 42-48. |
29 | KANG J E, VO T N, AHN S K, et al. Unique two-dimensional Prussian blue nanoplates for high-performance sodium-ion battery cathode[J]. Journal of Alloys and Compounds, 2023, 939: 168773. |
30 | MORANT-GINER M, SANCHIS-GUAL R, ROMERO J, et al. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium-and potassium-ion batteries[J]. Advanced Functional Materials, 2018, 28(27): 1706125. |
31 | JIANG M W, REN L B, HOU Z D, et al. A superior sodium-ion battery based on tubular Prussian blue cathode and its derived phosphide anode[J]. Journal of Power Sources, 2023, 554: 232334. |
32 | JIANG Y Z, YU S L, WANG B Q, et al. Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode[J]. Advanced Functional Materials, 2016, 26(29): 5315-5321. |
33 | QI W T, JIANG W, WANG M L, et al. Capacitance-dominated hierarchical porous three-dimensional carbon framework enhanced Prussian blue analogue as superior cathode for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2022, 47(48): 20942-20950. |
34 | WAN P, XIE H, ZHANG N, et al. Stepwise hollow Prussian blue nanoframes/carbon nanotubes composite film as ultrahigh rate sodium ion cathode[J]. Advanced Functional Materials, 2020, 30(38): 2002624. |
35 | LEE S Y, PARK J Y, KIM H J, et al. Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density[J]. Journal of Alloys and Compounds, 2022, 898: 162952. |
36 | KIM D S, YOO H, PARK M S, et al. Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT: PSS layer[J]. Journal of Alloys and Compounds, 2019, 791: 385-390. |
37 | TANG Y, ZHANG W X, XUE L H, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6]cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 6036-6041. |
38 | ZHANG Q, FU L, LUAN J Y, et al. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. |
39 | LUO Y, YANG L X, LIU Q, et al. In situ polyaniline coating of Prussian blue as cathode material for sodium-ion battery[J]. Royal Society Open Science, 2021, 8(11): 211092. |
40 | SYED MOHD FADZIL S A F, WOO H J, AZZAHARI A D, et al. Sodium-rich Prussian blue analogue coated by poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate as superior cathode for sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101540. |
41 | CHUN J Y, WANG X L, WEI C L, et al. Flexible and free-supporting Prussian blue analogs/MXene film for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2023, 576: 233165. |
42 | PENG F W, YU L, YUAN S Q, et al. Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37685-37692. |
43 | LIU Y, HE D D, CHENG Y J, et al. A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery[J]. Small, 2020, 16(11): e1906946. |
44 | NIE P, YUAN J R, WANG J, et al. Prussian blue analogue with fast kinetics through electronic coupling for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20306-20312. |
[1] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[2] | Zinan ZHANG, Jian CHEN. Preparation and property evaluation of Nb-doped Na3V2O2 (PO4 ) 2F hollow microspheres as cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(8): 2370-2381. |
[3] | Yuhua BIAN, Zhaomeng LIU, Xuanwen GAO, Jianguo LI, Da WANG, Shangzhuo LI, Wenbin LUO. Role of CoS2/NC in ether-based electrolytes as high-performance anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1500-1509. |
[4] | Yucheng DAI, Zengpeng WANG, Kaibao LIU, Jiateng ZHAO, Changhui LIU. Research progress of heat storage and heat transfer enhancement based on phase change materials [J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. |
[5] | Yang CAI, Zeyu ZHOU, Xiaoyan HUANG, Jiehong DENG, Fuyun ZHAO. Performance analysis of an environmental temperature-difference energy harvest device based on fin structure optimization [J]. Energy Storage Science and Technology, 2023, 12(12): 3780-3788. |
[6] | Na CHEN, Anqi LI, Zixiang GUO, Yuzhe ZHANG, Xue QIN. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(11): 3340-3351. |
[7] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[8] | Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG. Research progress of hard carbon anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. |
[9] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
[10] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[11] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[12] | Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance [J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. |
[13] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[14] | Xianghua ZHANG, Wei LUO, Xianhong RUI, Yan YU. Preparation and electrochemical performance of VOPO4·2H2O nanosheet cathode for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. |
[15] | CAO Yuliang. The opportunities and challenges of sodium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||