Energy Storage Science and Technology
Zhoulan Zeng(), Lei Shang, Zhijin Hu, Zongfan Wang, Xiaochao Xin, Ying Liu(
)
Received:
2024-11-25
Revised:
2024-12-12
Contact:
Ying Liu
E-mail:18162583934@163.com;liu_ying@zijinmining.com
CLC Number:
Zhoulan Zeng, Lei Shang, Zhijin Hu, Zongfan Wang, Xiaochao Xin, Ying Liu. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.1092.
1 | 朱亮, 严长青, 倪涛来. 锂离子电池预锂化技术的研究现状[J]. 电池, 2018, 48(3): 206-209. |
ZHU L, YAN C Q, NI T L. Research status quo of prelithiation technology for Li-ion battery[J]. Battery Bimonthly, 2018, 48(3): 206-209. | |
2 | 田孟羽, 詹元杰, 闫勇, 等 . 锂离子电池补锂技术[J]. 储能科学与技 术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812.] | |
3 | LIU X M, WU Z, XIE L Q, et al. Prelithiation enhances cycling life of lithium-ion batteries: A mini review[J]. Energy \& Environmental Materials, 2023, 6(6): e12501. |
4 | HOLTSTIEGE F, WILKEN A, WINTER M, et al. A route to differentiate between capacity Losses and active lithium losses in lithium-ion batteries[J]. Phys Chem Chem Phys, 2017, 19: 25905–25918. |
5 | CAO M Y, LIU Z P, ZHANG X, et al. Feasibility of prelithiation in LiFePO4[J]. Advanced Functional Materials, 2023, 33(9): 2210032. |
6 | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
HUANG X W, LI S P, ZHANG X G. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. | |
7 | 赵鹤, 韩策, 程小露, 等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
ZHAO H, HAN C, CHENG X L, et al. Research on the capacity ading mechanism of high rate aged lithium-ion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. | |
8 | WANG F, WANG B, LI J X, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery[J]. ACS Nano, 2021, 15(2): 2197-2218. |
9 | AUGUSTINE A M, SUDARSANAN V, RAVINDRAN P. Suppressing the initial capacity fade in Li-rich Li5FeO4 with anionic redox by partial Co substitution–a first-principles study[J]. Sustainable Energy & Fuels, 2023, 7(6): 1502-1521. |
10 | HUANG G X, LIANG J N, ZHONG X G, et al. Boosting the capability of Li2C2O4 as cathode pre-lithiation additive for lithiumion batteries[J]. Nano Research, 2023, 16(3): 3872-3878. |
11 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): 1502534. |
12 | ZHU B, WEN N, WANG J, et al. Defect engineering of air-stable Li5FeO4 towards an ultra-high capacity cathode prelithiation additive[J]. Chemical Science, 2024, 15(32): 12879-12888. |
13 | WANG D, WANG J, LI X, et al. Enhanced prelithiation performance of Li5FeO4 cathode additive and optimized solid electrolyte interface enabled by Mn substitution[J]. Journal of Alloys and Compounds, 2024, 992: 174607. |
14 | SONG Z H, FENG K, ZHANG H Z, et al. "Giving comes before receiving": High performance wide temperature range Li-ion battery with Li5V2(PO4)3 as both cathode material and extra Li donor[J]. Nano Energy, 2019, 66: 104175. |
15 | LIU X, LIU J, PENG J, et al. Addressing the initial lithium loss of lithium ion batteries by introducing pre-lithiation reagent Li5FeO4/C in the cathode side[J]. Electrochimica Acta, 2024, 481: 143918. |
16 | SU X, LIN C K, WANG X P, et al. A new strategy to mitigate the initial capacity loss of lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 150-157. |
17 | GORELIK V S, VODCHITS A I, BI D, et al. Raman scattering in LiOH and LiOD polycrystals[J]. Inorganic Materials, 2019, 55(3):271-276. |
18 | 曾林勇. 富锂化合物正极补锂添加剂的制备及电化学性能的研究 [D]. 广州: 广东工业大学, 2022. |
ZENG L Y. Study on preparation and electrochemical performance of lithium-rich compound as positive electrode lithium supplement additive[D].Guangzhou: Guangdong University of Technology, 2022. | |
19 | NIU L, WU M, ZHANG Y, et al. Surface phosphorylated Li5FeO4 prelithiation additive synergistically improves the air-stability and lithium-ion conductivity[J]. Chemical Engineering Journal, 2024, 498: 155242. |
20 | LI J, ZHU B, LI S H, et al. Air-stable Li6CoO4@Li5FeO4 prelithiation reagent in cathode enabling high performance lithiumion batteries[J]. Journal of the Electrochemical Society, 2021, 168 (8): 080510. |
21 | ZHANG L H, DOSE W M, VU A D, et al. Mitigating the initial capacity loss and improving the cycling stability of silicon monoxide using Li5FeO4[J]. Journal of Power Sources, 2018, 400: 549-555. |
22 | LIANG L, LUO J, CHEN M, et al. Synthesis and characterization of novel cathode material Li5FeO4 for Li-ion batteries[J]. International Journal of Electrochemical Science, 2013, 8(5): 6393-6398. |
23 | ZHU B, ZHANG W, WANG Q, et al. Understanding the Air‐Exposure Degradation Chemistry of the Sacrificial Cathode Additive Li5FeO4 for Li‐Ion Batteries[J]. Advanced Functional Materials, 2024, 34(22): 2315010. |
24 | LEE S W, KIM H K, KIM M S, et al. A study of the effects of synthesis conditions on Li5FeO4/carbon nanotube composites[J]. Scientific Reports, 2017, 7(1): 46530. |
25 | ZHANG R, YANG S, LI H, et al. Air sensitivity of electrode materials in Li/Na ion batteries: issues and strategies[J]. InfoMat, 2022, 4(6): e12305. |
[1] | Zhonglin SUN, Jiabo LI, Di TIAN, Zhixuan WANG, Xiaojing XING. Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD [J]. Energy Storage Science and Technology, 2024, 13(9): 3254-3265. |
[2] | Jizhong LU, Simin PENG, Xiaoyu LI. State-of-health estimation of lithium-ion batteries based on multifeature analysis and LSTM-XGBoost model [J]. Energy Storage Science and Technology, 2024, 13(9): 2972-2982. |
[3] | Xuefeng HU, Xianlei CHANG, Xiaoxiao LIU, Wei XU, Wenbin ZHANG. SOC estimation of lithium-ion batteries under multiple temperatures conditions based on MIARUKF algorithm [J]. Energy Storage Science and Technology, 2024, 13(9): 2983-2994. |
[4] | Siyuan SHEN, Yakun LIU, Donghuang LUO, Yujun LI, Wei HAO. Transient overvoltage protection design and circuit development for energy storage lithium-ion battery modules [J]. Energy Storage Science and Technology, 2024, 13(9): 3277-3286. |
[5] | Yuan CHEN, Siyuan ZHANG, Yujing CAI, Xiaohe HUANG, Yanzhong LIU. State-of-health estimation of lithium batteries based on polynomial feature extension of the CNN-transformer model [J]. Energy Storage Science and Technology, 2024, 13(9): 2995-3005. |
[6] | Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis [J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863. |
[7] | Hongsheng GUAN, Cheng QIAN, Bo SUN, Yi REN. Predicting capacity degradation trajectory for lithium-ion batteries under limited data conditions [J]. Energy Storage Science and Technology, 2024, 13(9): 3084-3093. |
[8] | Xue KE, Huawei HONG, Peng ZHENG, Zhicheng LI, Peixiao FAN, Jun YANG, Yuzheng GUO, Chunguang KUAI. Estimating lithium-ion battery health using automatic feature extraction and channel attention mechanisms for multi-timescale modeling [J]. Energy Storage Science and Technology, 2024, 13(9): 3059-3071. |
[9] | Chengwen TIAN, Bingxiang SUN, Xinze ZHAO, Zhicheng FU, Shichang MA, Bo ZHAO, Xubo ZHANG. Accelerated life prediction of lithium-ion batteries using data-driven approaches [J]. Energy Storage Science and Technology, 2024, 13(9): 3103-3111. |
[10] | Qingbo LI, Maohui ZHANG, Ying LUO, Taolin LYU, Jingying XIE. Lithium-ion battery state of charge estimation based on equivalent circuit model [J]. Energy Storage Science and Technology, 2024, 13(9): 3072-3083. |
[11] | Bingxiang SUN, Xin YANG, Xingzhen ZHOU, Shichang MA, Zhihao WANG, Weige ZHANG. Comparative parametric study of metaheuristics based on impedance modeling for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(9): 2952-2962. |
[12] | Yufeng HUANG, Huanchao LIANG, Lei XU. Kalman filter optimize Transformer method for state of health prediction on lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(8): 2791-2802. |
[13] | Zheng CHEN, Bo YANG, Zhigang ZHAO, Jiangwei SHEN, Renxin XIAO, Xuelei XIA. State of charge estimation considering lithium battery temperature and aging [J]. Energy Storage Science and Technology, 2024, 13(8): 2813-2822. |
[14] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
[15] | Chengxin LIU, Ziheng LI, Zeyu CHEN, Pengxiang LI, Qingyi TAO. Characterization study on overheat-induced thermal runaway for lithium-ion battery in energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2425-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||