Energy Storage Science and Technology
Wuzhe ZHANG1(), Zhiduan CAI2,3(
), Chengao WU1, Wei ZHENG1, Jiayang TONG2
Received:
2025-01-08
Revised:
2025-01-13
Contact:
Zhiduan CAI
E-mail:1035176174@qq.com;caizhiduan@zjhzu.edu.cn
CLC Number:
Wuzhe ZHANG, Zhiduan CAI, Chengao WU, Wei ZHENG, Jiayang TONG. Lithium Battery State of Health Estimation Method Based on Variational Mode Decomposition and Feature Enhancement[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0033.
Table 5
SOH Estimation Results of Different Methods at Varying Estimation Starting Points, Datasets, and Battery Models"
电池型号 | 估计起点 | 估计方法 | MAE(%) | RMSE(%) |
---|---|---|---|---|
B5 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 6.11 6.05 4.06 | 6.83 6.74 4.42 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 5.01 6.42 3.27 | 5.54 7.43 3.98 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 4.05 6.56 3.67 | 4.23 6.81 3.53 | |
B6 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 11.29 4.03 3.11 | 12.60 4.33 3.47 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 12.82 4.16 1.56 | 13.36 4.36 1.97 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 6.25 3.72 1.67 | 6.48 3.96 2.14 | |
B7 | T=40 | SVM VMD-SVM VMD-GAN-SVM | 4.69 3.41 2.60 | 5.61 4.00 3.58 |
T=50 | SVM VMD-SVM VMD-GAN-SVM | 3.11 2.73 2.32 | 3.42 2.98 2.57 | |
T=60 | SVM VMD-SVM VMD-GAN-SVM | 1.51 0.79 0.87 | 1.65 0.97 1.13 | |
1 | ROMAN D,SAXENA S,ROBU V,et al.Machine Learning Pipeline for Battery State-of-Health Estimation[J].Nature Machine Intelligence, 2021,3:447-456. |
2 | 胡晓亚,郭永芳,张若可.锂离子电池健康状态估计方法研究综述[J].电源学报,2022,20(01):126-133.HU X Y, GUO Y F, ZHANG R K. Review of lithium-ion battery health status estimation methods [J].Journal of Power Supply,2022, 20(1):126-133. |
3 | 王琛,闵永军.基于容量增量曲线与GWO-GPR的锂离子电池SOH估计[J].储能科学与技术,2023,12(11):3508-3518.WANG C,MIN Y J.SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR [J].Energy Storage Science and Technology,2023,12 (11): 3508-3518. |
4 | Li J, Adewuyi K, Yagin N L,et al.A Single Particle Model with Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation[J].Applied Energy,2018,212(15 February 2018):1178–1190. |
5 | Yang J, Cai Y, Pan C,et al.A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition[J].Applied Energy,2019, 254:113726. |
6 | Bezha M, Bezha K, Nagaoka N.A Practical SoH Estimation using Adaptive ANN algorithm for the embedded EIS diagnosis in Industrial Applications[C]//2022 IEEE International Conference on Consumer Electronics-Taiwan.IEEE,2022:571-572. |
7 | 韦荣阳,毛阗,高晗,彭建仁,杨健. 基于TWP-SVR的锂离子电池健康状态估计[J].储能科学与技术,2022,11(08):2585-2599.Wei R Y, Mao T, G H, Peng J R, Yang J.Health State Estimation of Lithium-Ion Batteries Based on TWP-SVR[J].Journal of Energy Storage Science and Technology,2022, 11(08): 2585-2599. |
8 | Lyu Z, Wang G, Gao R.Synchronous state of health estimation and remaininguseful lifetime prediction of Li-Ion battery through optimized relevance vectormachine framework[J].Energy,2022, 251: 123 |
9 | SPOTNITZ R.Simulation of capacity fade in lithium-ion batteries[J].Journal of Power Sources,2003,113(1):72-80. |
10 | ZHAO L,WANG Y,CHENG J.A hybrid method for remaining useful life estimation of lithium-ion battery with regeneration phenomena[J].Applied Sciences,2019,9(9):1890. |
11 | Yuan Z, Tian T, Hao F, et al.A hybrid neural network based on variational mode decomposition denoising for predicting state-of-health of lithium-ion batteries[J].Journal of Power Sources,2024, 609: 234697. |
12 | Gao K, Huang Z, Lyu C, et al.Multi-scale prediction of remaining useful life of lithium-ion batteries based on variational mode decomposition and integrated machine learning[J].Journal of Energy Storage,2024, 99:113372. |
13 | M. Zhu, Q. Ouyang, Y. Wan, et al.Remaining Useful Life Prediction of Lithium-Ion Batteries:A Hybrid Approach of Grey–Markov Chain Model and Improved Gaussian Process[J].IEEEJournal of Emerging and Selected Topics in Power Electronics, 2023. 11(1): 143-153.. |
14 | M. Wei, M. Ye, C. Zhang, et al.A multi-scale learning approach for remaining useful lifeprediction of lithium-ion batteries based on variational mode decomposition and Monte Carlosampling[J]. Energy,2023.283. |
15 | 胡天中,余建波.基于多尺度分解和深度学习的锂电池寿命预测[J].浙江大学学报(工学版),2019,53(10):1852-1864.Hu T Z, Yu J B.Lithium Battery Life Prediction Based on Multi-Scale Decomposition and Deep Learning[J].Journal of Zhejiang University (Engineering Edition),2019, 53(10): 1852-1864. |
16 | PAN H H, LU Z Q, WANG H Y, et al.Novel battery state-ofhealth online estimation method using multiple health indicators and an extreme learning machine[J].Energy,2018,160: 466-477. |
17 | 谢旭,蒲娴怡,毕贵红,等.基于二层分解技术的锂离子电池容量评估方法[J].电源技术,2022,46(06):647-651.Xie X, Pu X Y, Bi G H, et al.Capacity Evaluation Method for Lithium-Ion Batteries Based on Two-Layer Decomposition Technique[J].Power Supply Technology,2022,46(06): 647-651. |
18 | Lin C, Xu J, Shi M, et al.Constant current charging time based fast state-of-health estimation for lithium-ion batteries[J].Energy,2022, 247: 123556. |
19 | 李嘉波,王志璇,田迪,等.变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J/OL].储能科学与技术,1-14.Li J B, Wang Z X,Tian D,et al. The remaining service life prediction method of lithium-ion batteries with SSA-LSTM combination under variable mode decomposition[J/OL].Science and Technology forEnergyStorage,1-14. |
20 | 孙中麟,李嘉波,田迪,等.基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J].储能科学与技术,2024,13(09):3254-3265.Sun Zhonglin,Li Jiabo, Tian Di, et al. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on COA-LSTM and VMD[J].Journal of Energy Storage Science and Technology,2024, 13(09):3254-3265. |
21 | 张岸,杨春德.基于GAN-CNN-LSTM的锂电池SOH估计[J].电源技术,2021,45(07):902-906.Zhang A, Yang C D.SOH Estimation of Lithium Batteries Based on GAN-CNN-LSTM[J].Power Supply Technology,2021,45(07): 902-906. |
[1] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[2] | Wenjing CHENG, Tinglong PAN. Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM [J]. Energy Storage Science and Technology, 2020, 9(6): 1948-1953. |
[3] | WANG Yuyuan, LI Jiabo, ZHANG Fu. Battery state estimation of least squares support vector machinebased on particle swarm optimization [J]. Energy Storage Science and Technology, 2020, 9(4): 1153-1158. |
[4] | LI Jiabo, LI Zhongyu, JIAO Shengjie, YE Min, XU Xinxin. Lithium-ion state estimation based on feedback least square support vector machine [J]. Energy Storage Science and Technology, 2020, 9(3): 951-957. |
[5] | SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 975-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||