Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1198-1209.doi: 10.19799/j.cnki.2095-4239.2025.0048
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Xiaolong SUN1(), Haiting GONG2, Zhen CHEN2, Zhen WANG2, Rong HUANG2, Xianglei LIU1(
)
Received:
2025-01-14
Revised:
2025-01-23
Online:
2025-03-28
Published:
2025-04-28
Contact:
Xianglei LIU
E-mail:xiaolong2202081@163.com;xliu@nuaa.edu.cn
CLC Number:
Xiaolong SUN, Haiting GONG, Zhen CHEN, Zhen WANG, Rong HUANG, Xianglei LIU. Synergistic enhancement of heat and mass transfer and heat storage characteristics in calcium-based thermochemical heat storage reactors[J]. Energy Storage Science and Technology, 2025, 14(3): 1198-1209.
1 | DUAN W Q, KHURSHID A, NAZIR N, et al. From gray to green: Energy crises and the role of CPEC[J]. Renewable Energy, 2022, 190: 188-207. DOI: 10.1016/j.renene.2022.03.066. |
2 | YANG Q C, ZHENG M B, CHANG C P. Energy policy and green innovation: A quantile investigation into renewable energy[J]. Renewable Energy, 2022, 189: 1166-1175. DOI: 10.1016/j.renene. 2022.03.046. |
3 | MOULAKHNIF K, AIT OUSALEH H, SAIR S, et al. Renewable approaches to building heat: Exploring cutting-edge innovations in thermochemical energy storage for building heating[J]. Energy and Buildings, 2024, 318: 114421. DOI: 10.1016/j.enbuild. 2024.114421. |
4 | CHATE A, SRINIVASA MURTHY S, DUTTA P. Analysis of a coupled calcium oxide-potassium carbonate salt hydrate based thermochemical energy storage system[J]. Energy, 2024, 313: 134067. DOI: 10.1016/j.energy.2024.134067. |
5 | SANTAMARÍA PADILLA A, ROMERO-PAREDES RUBIO H. A thermochemical energy storage materials review based on solid-gas reactions for supercritical CO2 solar tower power plant with a Brayton cycle[J]. Journal of Energy Storage, 2023, 73: 108906. DOI: 10.1016/j.est.2023.108906. |
6 | IRAM R, ANSER M K, AWAN R U, et al. Prioritization of renewable solar energy to prevent energy insecurity: An integrated role[J]. The Singapore Economic Review, 2021, 66(2): 391-412. DOI: 10.1142/s021759082043002x. |
7 | LAZZARIN R. Heat pumps and solar energy: A review with some insights in the future[J]. International Journal of Refrigeration, 2020, 116: 146-160. DOI: 10.1016/j.ijrefrig.2020.03.031. |
8 | CABEZA L. Advances in thermal energy storage systems: Methods and applications[M]. Amsterdam: Woodhead Publishing, 2021: 37-54. |
9 | TIAN X K, GUO S J, LV X J, et al. Progress in multiscale research on calcium-looping for thermochemical energy storage: From materials to systems[J]. Progress in Energy and Combustion Science, 2025, 106: 101194. DOI: 10.1016/j.pecs. 2024.101194. |
10 | ZHANG W Y, JI Y, FAN Y B, et al. Three-dimensional numerical study on finned reactor configurations for ammonia thermochemical sorption energy storage[J]. Chemical Engineering Science, 2024, 300: 120599. DOI: 10.1016/j.ces.2024.120599. |
11 | YADAV D, BANERJEE R. A review of solar thermochemical processes[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 497-532. DOI: 10.1016/j.rser.2015.10.026. |
12 | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. DOI: 10.1016/j.rser.2013.12.014. |
13 | ANDRÉ L, ABANADES S, FLAMANT G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 703-715. DOI: 10.1016/j.rser.2016.06.043. |
14 | STRÖHLE S, HASELBACHER A, JOVANOVIC Z R, et al. The effect of the gas-solid contacting pattern in a high-temperature thermochemical energy storage on the performance of a concentrated solar power plant[J]. Energy & Environmental Science, 2016, 9(4): 1375-1389. DOI: 10.1039/C5EE03204K. |
15 | QIU Y N, YANG Y, YANG N, et al. Thermochemical energy storage using silica gel: Thermal storage performance and nonisothermal kinetic analysis[J]. Solar Energy Materials and Solar Cells, 2023, 251: 112153. DOI: 10.1016/j.solmat. 2022. 112153. |
16 | XU Q H, WANG L, LI Z S, et al. A calcium looping system powered by renewable electricity for long-term thermochemical energy storage, residential heat supply and carbon capture[J]. Energy Conversion and Management, 2023, 276: 116592. DOI: 10.1016/j.enconman.2022.116592. |
17 | PALACIOS A, BARRENECHE C, NAVARRO M E, et al. Thermal energy storage technologies for concentrated solar power-A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. DOI: 10.1016/j.renene.2019.10.127. |
18 | LI X, JIANG H C, SU Z X, et al. Integrated attrition model of mechanical-thermal-reaction for CaCO3/CaO thermochemical energy storage[J]. Applied Thermal Engineering, 2024, 257: 124247. DOI: 10.1016/j.applthermaleng.2024.124247. |
19 | WEI L Y, PAN Z F, SUN S C, et al. Solar-driven collaborative thermochemical energy storage and fuel production via integrating calcium looping and redox cycle[J]. Chemical Engineering Journal, 2024, 500: 157364. DOI: 10.1016/j.cej.2024.157364. |
20 | ZHAO J, KORBA D, MISHRA A, et al. Particle-based high-temperature thermochemical energy storage reactors[J]. Progress in Energy and Combustion Science, 2024, 102: 101143. DOI: 10.1016/j.pecs.2024.101143. |
21 | XU T X, TIAN X K, KHOSA A A, et al. Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor[J]. Energy, 2021, 236: 121451. DOI: 10.1016/j.energy.2021.121451. |
22 | JOHN M K, VISHNU K, VISHNU C, et al. Experimental and numerical investigations on an open thermochemical energy storage system using low-temperature hydrate salt[J]. Thermal Science and Engineering Progress, 2024, 53: 102749. DOI: 10.1016/j.tsep.2024.102749. |
23 | MATHEW A, NADIM N, CHANDRATILLEKE T T, et al. Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application[J]. Solar Energy, 2022, 241: 262-274. DOI: 10.1016/j.solener.2022.06.005. |
24 | DENG Y J, ZHU Z Y, LIU Z M, et al. Study on coupling characteristics of thermal-fluid-chemical multi-physics field in CaCO3/CaO thermochemical exothermic reactor[J]. Chemical Engineering Science, 2024, 299: 120453. DOI: 10.1016/j.ces. 2024.120453. |
25 | HAN X C, XU H J, ZHAO C Y. Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling[J]. Renewable Energy, 2022, 195: 1324-1340. DOI: 10.1016/j.renene.2022.06.120. |
26 | HAN X C, XU H J, LI Y Y. Experimental investigation on thermochemical reaction with gradient-porosity reactor for medium temperature heat storage applications[J]. Journal of Energy Storage, 2024, 78: 110021. DOI: 10.1016/j.est. 2023. 110021. |
27 | YAN J, JIANG L, ZHAO C Y. Numerical simulation of the Ca(OH)2/CaO thermochemical heat storage process in an internal heating fixed-bed reactor[J]. Sustainability, 2023, 15(9): 7141. DOI: 10.3390/su15097141. |
28 | WANG W, SHUAI Y, YANG J Y, et al. Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device[J]. Renewable Energy, 2023, 218: 119364. DOI: 10.1016/j.renene.2023.119364. |
29 | CHEN J T, XIA B Q, ZHAO C Y. Topology optimization for heat transfer enhancement in thermochemical heat storage[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119785. DOI: 10.1016/j.ijheatmasstransfer.2020.119785. |
30 | HUMBERT G, SCIACOVELLI A. Design of effective heat transfer structures for performance maximization of a closed thermochemical energy storage reactor through topology optimization[J]. Applied Thermal Engineering, 2024, 239: 122146. DOI: 10.1016/j.applthermaleng.2023.122146. |
31 | ZHU L J, CAI T F, CHEN X Y, et al. Gas-solid flow behavior and heat transfer in a spiral-based reactor for calcium-based thermochemical energy storage[J]. Journal of Energy Storage, 2024, 99: 113481. DOI: 10.1016/j.est.2024.113481. |
32 | SHI T, XU H J, QI C, et al. Multi-physics modeling of thermochemical heat storage with enhance heat transfer[J]. Applied Thermal Engineering, 2021, 198: 117508. DOI: 10.1016/j.applthermaleng.2021.117508. |
33 | YONG Z, MATA V, RODRIGUES A E. Adsorption of carbon dioxide at high temperature—A review[J]. Separation and Purification Technology, 2002, 26(2/3): 195-205. DOI: 10.1016/S1383-5866(01)00165-4. |
34 | SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873. DOI: 10.1016/j.cherd.2013.02.019. |
35 | LIU X L, CHENG B, ZHU Q B, et al. Highly efficient solar-driven CO2 reforming of methane via concave foam reactors[J]. Energy, 2022, 261: 125141. DOI: 10.1016/j.energy.2022.125141. |
36 | 顾清之, 赵长颖. 镁-氢化镁热化学蓄热系统数值分析[J]. 化工学报, 2012, 63(12): 3776-3783. DOI: 10.3969/j.issn.0438-1157. 2012. 12.006. |
GU Q Z, ZHAO C Y. Numerical study on Mg/MgH2 thermochemical heat storage system[J]. CIESC Journal, 2012, 63(12): 3776-3783. DOI: 10.3969/j.issn.0438-1157.2012.12.006. | |
37 | DU PLESSIS P, MONTILLET A, COMITI J, et al. Pressure drop prediction for flow through high porosity metallic foams[J]. Chemical Engineering Science, 1994, 49(21): 3545-3553. DOI: 10.1016/0009-2509(94)00170-7. |
[1] | Hongkun MA, Mingxi JI, Yulong DING. Current status and advances in the low-to-medium temperature sorption-based thermochemical heat storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4436-4451. |
[2] | Liang YAO, Nan HE, Qicheng CHEN. Preparation and thermal storage properties of CaO-based thermal storage module with a hierarchically porous structure [J]. Energy Storage Science and Technology, 2024, 13(12): 4282-4289. |
[3] | Lexiao WANG, Yimo LUO, Liming WANG, Gesang YANG. Research on the performance of thermal storage reactor with salt hydrates under multifactor interactions [J]. Energy Storage Science and Technology, 2024, 13(12): 4396-4405. |
[4] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[5] | Jixiang GE, Mingxi JI, Yulong DING, Yimo LUO, Liming WANG. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application [J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. |
[6] | Yelong ZHANG, Qi MIAO, Pengfei SONG, Linghua TAN, Yi JIN, Yulong DING. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorption materials [J]. Energy Storage Science and Technology, 2023, 12(1): 42-50. |
[7] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[8] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[9] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[10] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[11] | Weishu WANG, Xiangxin ZHANG, Zikun YAO, Juan ZHEN. Study on reaction rate characteristics of hydrogen storage in MgH2 reactor [J]. Energy Storage Science and Technology, 2022, 11(5): 1543-1550. |
[12] | Yachao MO, Jun YAN, Changying ZHAO. Preparation and thermal storage properties of CaO/Ca(OH) 2 core-shell-structured particles [J]. Energy Storage Science and Technology, 2022, 11(12): 3828-3835. |
[13] | Xinmei LUO, Jia'an GU. Numerical analysis of fractal fins with different aspect ratios to enhance phase change material melting heat transfer [J]. Energy Storage Science and Technology, 2021, 10(2): 523-533. |
[14] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[15] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||