Energy Storage Science and Technology
Liang YAO(), Nan HE(), Qicheng CHEN()
Received:
2024-09-13
Revised:
2024-09-26
Online:
2024-10-21
Contact:
Nan HE, Qicheng CHEN
E-mail:2202100517@neepu.edu.cn;henan@neepu.edu.cn;chenqicheng2010@hotmail.com
CLC Number:
Liang YAO, Nan HE, Qicheng CHEN. Preparation and thermal storage properties of CaO-based thermal storage module with hierarchically porous structure[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0863.
1 | International Energy Agency. World Energy Outlook 2023[EB/OL] https://www.iea.org/reports/world-energy-outlook-2023. |
2 | D. AYDIN, S.P. CASEY, S. RIFFAT. The latest advancements on thermochemical heat storage systems[J], Renewable and Sustainable Energy Reviews, 41(2015): 356–367. |
3 | M. ALVAREZ RIVERO, D. RODRIGUES, C.I.C. PINHERIRO, et al. Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review[J], Renewable and Sustainable Energy Reviews, 158(2022): 112-048. |
4 | P. PARDO, A. DEYDIER, Z. ANXIONNAZ-MINVIELLE, et al. A review on high temperature thermochemical heat energy storage[J], Renewable and Sustainable Energy Reviews, 32(2014): 591–610. |
5 | R. MOLINDER, T.P. COMYN, N. HONDOW, et al. In situ X-ray diffraction of CaO based CO2 sorbents[J], Energy Environ, Sci. 5(2012): 8958–8969. |
6 | M. BENITEZ-GUERRERO, B. SARRION, A. PEREJON, et al. Large-scale high-temperature solar energy storage using natural minerals[J], Solar Energy Materials and Solar Cells, 168(2017): 14–21. |
7 | M. BENITEZ-GUERRERO J.M. VALVERDW, P.E. SANCHEZ-JIMENEZ, et al. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants[J], Solar Energy, 153(2017): 188–199. |
8 | A.A. KHOSA, X. HAN, C.Y. Zhao. Experimental investigation of CaCO3/CaO reaction pair in a fixed bed reactor for CSP application[J], Renewable Energy, 221(2024): 119731. |
9 | A. SZULC, E. SKOTNICKA, M.K. GUPTA, et al. Powder agglomeration processes of bulk materials – A state of the art review on different granulation methods and applications[J], Powder Technology, 431(2024): 119092. |
10 | C.K. Ho, B.D. LVERSON, Review of high-temperature central receiver designs for concentrating solar power[J], Renewable and Sustainable Energy Reviews, 29(2014): 835–846. |
11 | Y. Zhang, Y. LI Y. XU, F. WANG, et al. CaO/CaCO3 thermochemical energy storage performance of MgO/ZnO co-doped CaO honeycomb in cycles[J], Journal of Energy Storage, 66(2023): 107447. |
12 | A. SINGH, S. TWSCARI, G. LANTIN, et al. Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modeling and experimental validation[J], Solar Energy, 144(2017): 453–465. |
13 | X. CHEN, M. KUBOTA, N. KOBAYASHI, S. LIN, et al. Development of redox-type thermochemical energy storage module: A support-free porous foam made of CuMn2O4/CuMnO2 redox couple[J], Chemical Engineering Journal, 485(2024): 149540. |
14 | C. ORTIZ, J.M. VALVERDE, R. CHACARTEQUI, et al. The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants[J], Renewable and Sustainable Energy Reviews, 113(2019): 109252. |
15 | C. ORTIZ, J.M. VALVERDE, R. CHACARTEGUI, et al. Carbonation of Limestone Derived CaO for Thermochemical Energy Storage: From Kinetics to Process Integration in Concentrating Solar Plants[J], ACS Sustainable Chem, Eng. 6(2018): 6404–6417. |
16 | A. MARTINEZ, Y. LARA, P. LISBONA, et al. Energy penalty reduction in the calcium looping cycle[J], International Journal of Greenhouse Gas Control, 7 (2012): 74–81. |
17 | Y. LARA, P. LISBONA, A. MARTINEZ, et al. Comparative study of optimized purge flow in a CO2 capture system using different sorbents[J], Energy Procedia, 1(2009): 1359–1366. |
18 | A.A. KHOSA, C.Y. ZHAO. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano-silica[J], Solar Energy, 188(2019): 619–630. |
19 | M. ABREU, P. TEIXEIRA, R.M. FILIPE, et al. Modeling the deactivation of CaO-based sorbents during multiple Ca-looping cycles for CO2 post-combustion capture[J], Computers & Chemical Engineering, 134(2020): 106679. |
20 | SCOTT CHAMPAGNE, DENNIS Y. LU, ARTURO MACCHI, et al. Influence of Steam Injection during Calcination on the Reactivity of CaO-Based Sorbent for Carbon Capture[J], Industrial & Engineering Chemistry Research. 526(2013): 2241–2246. |
21 | B. SARRION, A. PEREJON, P.E. SANCHEZ-JIMENEZ. Role of calcium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage[J], Journal of CO2 Utilization, 28(2018): 374–384. |
22 | Y. XU, Y. LI, C. ZHANG, Y. WANG, et al. High-Temperature Thermochemical Heat Storage Performance of CaO Honeycombs During CaO/CaCO3 Cycles[J], Energy Fuels, 35(2021): 16882–16893. |
23 | P. SUN, J.R. GRACE, C.J. LIM, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J], AIChE Journal, 53(2007): 2432–2442. |
24 | Y. GENG, Y. GUO, B. FAN, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification, Journal of Fuel Chemistry and Technology, 49(2021): 998–1013. |
[1] | Jixiang GE, Mingxi JI, Yulong DING, Yimo LUO, Liming WANG. Parameter optimization of a thermochemical reactor using salt hydrates: A case study of heating application [J]. Energy Storage Science and Technology, 2023, 12(12): 3799-3807. |
[2] | Yelong ZHANG, Qi MIAO, Pengfei SONG, Linghua TAN, Yi JIN, Yulong DING. Preparation and performance evaluation of mineral-based magnesium sulfate thermochemical adsorption materials [J]. Energy Storage Science and Technology, 2023, 12(1): 42-50. |
[3] | Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies [J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. |
[4] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[5] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[6] | Yachao MO, Jun YAN, Changying ZHAO. Preparation and thermal storage properties of CaO/Ca(OH) 2 core-shell-structured particles [J]. Energy Storage Science and Technology, 2022, 11(12): 3828-3835. |
[7] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[8] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[9] | DENG Chang, PAN Zhihao, YAN Jun, ZHAO Changying. Numerical study on exothermic process of a CaO-Ca(OH)2 thermochemical heat storage system [J]. Energy Storage Science and Technology, 2018, 7(2): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||