Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (12): 4290-4298.doi: 10.19799/j.cnki.2095-4239.2024.0940
• Special Issue on Thermochemical Energy Storage • Previous Articles Next Articles
Mengru WANG(), Xirui SUN, Haoyu ZHANG, Jian CHEN(
), Youshi LI(
)
Received:
2024-10-07
Revised:
2024-10-23
Online:
2024-12-28
Published:
2024-12-23
Contact:
Jian CHEN, Youshi LI
E-mail:1761701432@qq.com;202100119@cslg.edu.cn;542460565@qq.com
CLC Number:
Mengru WANG, Xirui SUN, Haoyu ZHANG, Jian CHEN, Youshi LI. Investigation on support modification on thermochemical energy storage characteristics of Ca/Cu composites[J]. Energy Storage Science and Technology, 2024, 13(12): 4290-4298.
1 | 万燕鸣, 熊亚林, 王雪颖. 全球主要国家氢能发展战略分析[J]. 储能科学与技术, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. |
WAN Y M, XIONG Y L, WANG X Y. Strategic analysis of hydrogen energy development in major countries[J]. Energy Storage Science and Technology, 2022, 11(10): 3401-3410. DOI: 10.19799/j.cnki.2095-4239.2022.0132. | |
2 | 刘玮, 万燕鸣, 熊亚林, 等. "双碳" 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. |
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385. | |
3 | 刘坚. 适应可再生能源消纳的储能技术经济性分析[J]. 储能科学与技术, 2022, 11(1): 397-404. DOI: 10.19799/j.cnki.2095-4239. 2021.0379. |
LIU J. Economic assessment for energy storage technologies adaptive to variable renewable energy[J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. DOI: 10.19799/j.cnki.2095-4239.2021.0379. | |
4 | 李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239. 2018.0062. |
LI L L, FAN S S, CHEN Q X, et al. Hydrogen storage technology: Current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. DOI: 10.12028/j.issn.2095-4239.2018.0062. | |
5 | 贾海平, 王雅仪, 葛丽莎, 等. 储氢装备关键技术研究进展[J]. 西安工业大学学报, 2024, 44(4): 441-462. DOI: 10.16185/j.jxatu.edu.cn.2024.04.201. |
JIA H P, WANG Y Y, GE L S, et al. Review on key technologies of hydrogen storage equipment[J]. Journal of Xi'an Technological University, 2024, 44(4): 441-462. DOI: 10.16185/j.jxatu.edu.cn.2024.04.201. | |
6 | 闫光龙, 郭克星, 赵苗苗. 储氢技术的研究现状及进展[J]. 天然气与石油, 2023, 41(5): 1-9. DOI: 10.3969/j.issn.1006-5539. 2023.05.001. |
YAN G L, GUO K X, ZHAO M M. Status and progress on hydrogen storage technology research[J]. Natural Gas and Oil, 2023, 41(5): 1-9. DOI: 10.3969/j.issn.1006-5539.2023.05.001. | |
7 | 张慧敏, 田磊, 孙云峰, 等. 有机液体储氢研究进展及管道运输的思考[J]. 油气储运, 2023, 42(4): 375-390. DOI: 10.6047/j.issn.1000-8241.2023.04.002. |
ZHANG H M, TIAN L, SUN Y F, et al. Progress of research on hydrogen storage in organic liquid and thinking about pipeline transportation[J]. Oil & Gas Storage and Transportation, 2023, 42(4): 375-390. DOI: 10.6047/j.issn.1000-8241.2023.04.002. | |
8 | 孙峰, 彭浩, 凌祥. 中高温热化学反应储能研究进展[J]. 储能科学与技术, 2015, 4(6): 577-584. |
SUN F, PENG H, LING X. Progress in medium to high temperature thermochemical energy storage technologies[J]. Energy Storage Science and Technology, 2015, 4(6): 577-584. | |
9 | 陈健, 李友势, 陆新元, 等. CeO2负载钙铜复合纳米小球的合成及其热化学储能特性[J]. 华南师范大学学报(自然科学版), 2024, 56(2): 55-61. |
CHEN J, LI Y S, LU X Y, et al. Investigation on synthesis of CeO2-stabilized CaO/CuO composite nanospheres and their thermochemical energy storage characteristics[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(2): 55-61. | |
10 | 陈健, 李铭迪, 胡焰彬, 等. 基于钙基吸收剂/载氧体的可再生能源存储利用方法及系统: CN114307585A[P]. 2022-04-12. |
11 | QIN C L, FENG B, YIN J J, et al. Matching of kinetics of CaCO3 decomposition and CuO reduction with CH4 in Ca-Cu chemical looping[J]. Chemical Engineering Journal, 2015, 262: 665-675. DOI: 10.1016/j.cej.2014.10.030. |
12 | DA Y, ZHOU J L. Multi-doping strategy modified calcium-based materials for improving the performance of direct solar-driven calcium looping thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111613. DOI: 10.1016/j.solmat.2022.111613. |
13 | FERNÁNDEZ J R, ALARCÓN J M, ABANADES J C. Investigation of a fixed-bed reactor for the calcination of CaCO3 by the simultaneous reduction of CuO with a fuel gas[J]. Industrial & Engineering Chemistry Research, 2016, 55(18): 5128-5132. DOI: 10.1021/acs.iecr.5b04073. |
14 | 陈健, 孙世超, 李铭迪, 等. 钙铜复合吸收剂CO2捕集性能优化研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043. |
CHEN J, SUN S C, LI M D, et al. The progress in the research on optimizing CO2 capture performance of CaO/CuO composites[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 43-52. DOI: 10.6054/j.jscnun.2022043. | |
15 | KIERZKOWSKA A M, MÜLLER C R. Development of calcium-based, copper-functionalised CO2 sorbents to integrate chemical looping combustion into calcium looping[J]. Energy & Environmental Science, 2012, 5(3): 6061-6065. DOI: 10.1039/C2EE03079A. |
16 | MA J C, MEI D F, PENG W W, et al. On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC)[J]. Chemical Engineering Journal, 2019, 368: 504-512. DOI: 10.1016/j.cej.2019.02.188. |
17 | 陈健, 李友势, 黄昌强, 等. 钙铜复合吸收剂的一步法合成及其CO2捕集性能[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057. |
CHEN J, LI Y S, HUANG C Q, et al. Investigation on one-step synthesis of CaO/CuO composite pellets and their CO2 capture performance[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 1-7. DOI: 10.6054/j.jscnun.2023057. | |
18 | XING S, HAN R, WANG Y, et al. Facile fabrication of aluminum-oxide deposited CuO/CaO composites with enhanced stability and CO2 capture capacity for combined Ca/Cu looping process[J]. Microporous and Mesoporous Materials, 2022, 337: 111923. DOI: 10.1016/j.micromeso.2022.111923. |
19 | QIN C L, YIN J J, LIU W Q, et al. Behavior of CaO/CuO based composite in a combined calcium and copper chemical looping process[J]. Industrial & Engineering Chemistry Research, 2012, 51(38): 12274-12281. DOI: 10.1021/ie300677s. |
20 | NAEEM M A, ARMUTLULU A, IMTIAZ Q, et al. CaO-based CO2 sorbents effectively stabilized by metal oxides[J]. Chemphyschem, 2017, 18(22): 3280-3285. DOI: 10.1002/cphc.201700695. |
21 | MANOVIC V, WU Y H, HE I, et al. Core-in-shell CaO/CuO-based composite for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12384-12391. DOI: 10.1021/ie201427g. |
22 | 张振民, 陈健, 王研凯, 等. 惰性载体支撑钙铜复合吸收剂的碳酸化性能及其动力学分析[J]. 石油学报(石油加工), 2020, 36(6): 1389-1397. |
ZHANG Z M, CHEN J, WANG Y K, et al. Analysis of carbonation and kinetic performance of inert support-stabilized CaO/CuO composites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(6): 1389-1397. | |
23 | WESTBYE A, ARANDA A, DIETZEL P D C, et al. The effect of Copper(II) oxide loading and precursor on the cyclic stability of combined mayenite based materials for calciumcopper looping technology[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12604-12616. DOI: 10.1016/j.ijhydene.2018.11.200. |
24 | KAZI S S, ARANDA A, DI FELICE L, et al. Development of cost effective and high performance composite for CO2 capture in Ca-Cu looping process[J]. Energy Procedia, 2017, 114: 211-219. DOI: 10.1016/j.egypro.2017.03.1163. |
25 | GUO H X, KOU X C, ZHAO Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: Textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246. DOI: 10.1016/j.cej.2017.09.198. |
26 | LIU H, ZHANG J S, WEI J J. Mn and Mg synergistically stabilized CaO as an effective thermochemical material for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2023, 252: 112202. DOI: 10.1016/j.solmat.2023.112202. |
27 | KIERZKOWSKA A M, MÜLLER C R. Sol-gel-derived, calcium-based, copper-functionalised CO2 sorbents for an integrated chemical looping combustion-calcium looping CO2 capture process[J]. ChemPlusChem, 2013, 78(1): 92-100. DOI: 10.1002/cplu.201200232. |
[1] | Feng XIAO, Fulai CHENG, Xuemei LUO, Guangping ZHANG, Bin ZHANG. Study on the tensile properties of PET-Cu composite current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1755-1766. |
[2] | Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806. |
[3] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[4] | Rongyu XU, Haitao LU, Hedu GUO, Zhanyun TANG, Qi LI, Yuting WU. Form-stable quaternary nitrate salt-based composite phase change material with low melting temperature for low-medium-temperature thermal energy storage [J]. Energy Storage Science and Technology, 2024, 13(5): 1451-1459. |
[5] | Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325. |
[6] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[7] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[8] | Hongbing CHEN, Yuhang LIU, Congcong WANG, Men LI, Yan ZHANG, Haoyang LU, Chunyang LI. Properties of composite shape-stabilized phase change materials incorporating docosane and dodecyl alcohol with added expanded graphite [J]. Energy Storage Science and Technology, 2024, 13(2): 396-404. |
[9] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[10] | Shuyu XU, Yan WANG. Numerical study of thermochemical energy storage characteristics of MgSO4 [J]. Energy Storage Science and Technology, 2024, 13(12): 4299-4309. |
[11] | Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. |
[12] | Hedan TANG, Han YE, Youjin ZHANG, Rui SHEN, Wenzhong LU, Jian CHEN, Youshi LI, Mingdi LI. Investigation on synthesis of Y2O3/ZrO2 co-stabilized Cu/Ca composites and their thermochemical energy storage properties [J]. Energy Storage Science and Technology, 2024, 13(12): 4310-4318. |
[13] | Jie CHEN, Hongkun MA, Yulong DING. MgSO4·7H2O for thermochemical energy storage: Hydration/dehydration kinetics and cyclability [J]. Energy Storage Science and Technology, 2024, 13(12): 4259-4271. |
[14] | Boyu LIU, Qing PANG, Tengfei WANG, Hongyu WANG. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795. |
[15] | Cheng CHEN, Shili LIN, Anxin HU, Xianyong ZHANG. Research on energy management strategy optimization of CCHP system with composite energy storage in grid-connected and power export modes [J]. Energy Storage Science and Technology, 2024, 13(11): 3981-3992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||