Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (6): 1755-1766.doi: 10.19799/j.cnki.2095-4239.2024.0056
• Energy Storage Materials and Devices • Previous Articles Next Articles
Feng XIAO1(), Fulai CHENG2,3, Xuemei LUO2, Guangping ZHANG2, Bin ZHANG1()
Received:
2024-01-17
Revised:
2024-02-07
Online:
2024-06-28
Published:
2024-06-26
Contact:
Bin ZHANG
E-mail:1519603183@qq.com;zhangb@atm.neu.edu.cn
CLC Number:
Feng XIAO, Fulai CHENG, Xuemei LUO, Guangping ZHANG, Bin ZHANG. Study on the tensile properties of PET-Cu composite current collectors for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(6): 1755-1766.
Table 1
Standard for tensile test of plastic films and current collector metal foils"
标准号 | 标准名称 | 试样形状 | 标距长度 /mm | 标距宽度 /mm | 拉伸速率①/(mm/min) |
---|---|---|---|---|---|
GB/T 1040.3—2006 | 塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件 | Ⅰ 狗骨状 Ⅱ 矩形 | Ⅰ 50 Ⅱ 50 | Ⅰ 10 Ⅱ 10~25 | 50 |
GB/T 41791—2022 | 塑料制品 薄膜和薄片 无取向聚对苯二甲酸乙二醇酯(PET)片材 | Ⅰ 狗骨状 Ⅱ 矩形 | Ⅰ 50 Ⅱ 50 | Ⅰ 10 Ⅱ 10~25 | 50 |
SJ/T11483—2014 | 锂离子电池用电解铜箔 | 矩形 | 50 | 15 | 50 |
ASTM D638—2014 | Standard Test Method for Tensile Properties of Plastics | 狗骨状 | 50 | 13 | 5/50/500 |
ASTM E345—2016 | Standard Test Methods of Tension Testing of Metallic Foil | Ⅰ 狗骨状 Ⅱ 矩形 | Ⅰ 50 Ⅱ 50 | Ⅰ 12.5 Ⅱ 12.5 | 0.002~0.01 |
ASTM D882—2018 | Standard Test Method for Tensile Properties of Thin Plastic Sheeting | 矩形 | ≥50 | 5~25.4 | 12.5/50/500 |
ISO 527-2:2012 | Plastics-Determination of tensile properties-Part 2:Test conditions for moulding and extrusion plastics | 狗骨状 | 50/75 | 10 | 50 |
Table 2
The sample specification and experimental parameters of PET-Cu composite current collectors tensile test"
影响因素 | 试样形状 | 取样方向 | 应变速率/ | 标距长度 /mm | 标距宽度 /mm |
---|---|---|---|---|---|
试样形状 | 狗骨状 | 纵向 | 50 | 10 | |
矩形 | 纵向 | 50 | 10 | ||
取样方向 | 狗骨状 | 纵向 | 50 | 10 | |
狗骨状 | 横向 | 50 | 10 | ||
应变速率 | 狗骨状 | 纵向 | 50 | 10 | |
狗骨状 | 纵向 | 50 | 10 | ||
狗骨状 | 纵向 | 50 | 10 | ||
标距宽度 | 狗骨状 | 纵向 | 50 | 5 | |
狗骨状 | 纵向 | 50 | 10 | ||
狗骨状 | 纵向 | 50 | 15 | ||
狗骨状 | 纵向 | 50 | 25 | ||
标距长度 | 狗骨状 | 纵向 | 25 | 10 | |
狗骨状 | 纵向 | 50 | 10 | ||
狗骨状 | 纵向 | 75 | 10 | ||
狗骨状 | 纵向 | 100 | 10 |
1 | LAIN, BRANDON, KENDRICK. Design strategies for high power vs. high energy lithium ion cells[J]. Batteries, 2019, 5(4): 64. |
2 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561. |
3 | YANG R X, XIONG R, MA S X, et al. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks[J]. Applied Energy, 2020, 260: 114253. |
4 | ZENG X Q, LI M, ABD EL-HADY D, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. |
5 | 顾磊. 锂离子电池在新能源汽车中的应用与发展探讨[J]. 时代汽车, 2021(8): 105-106. |
GU L. Discussion on the application and development of lithium-ion batteries in new energy vehicles[J]. Auto Time, 2021(8): 105-106. | |
6 | 熊凡, 张卫新, 杨则恒, 等. 高比能量锂离子电池正极材料的研究进展[J]. 储能科学与技术, 2018, 7(4): 607-617. |
XIONG F, ZHANG W X, YANG Z H, et al. Research progress on cathode materials for high energy density lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 607-617. | |
7 | CHANG J, HUANG Q Y, GAO Y, et al. Pathways of developing high-energy-density flexible lithium batteries[J]. Advanced Materials, 2021, 33(46): e2004419. |
8 | HUANG J D, ZHU Y H, FENG Y, et al. Research progress on key materials and technologies for secondary batteries[J]. Acta Physico-Chimica Sinica, 2022, 38(12): 2208008. |
9 | LI J L, FLEETWOOD J, HAWLEY W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. |
10 | RANA S, KUMAR R, BHARJ R S. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal, 2023, 463: 142336. |
11 | ZHU C, LIU Z Q, WANG J, et al. Novel Co2VO4 anodes using ultralight 3D metallic current collector and carbon sandwiched structures for high-performance Li-ion batteries[J]. Small, 2017, 13(34): 1701260. |
12 | LIAO S Y, HUANG X W, RAO Q S, et al. A multifunctional MXene additive for enhancing the mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4494-4504. |
13 | ZHANG C, PARK S H, SERAL‐ASCASO A, et al. High capacity silicon anodes enabled by MXene viscous aqueous ink[J]. Nature Communications, 2019, 10: 849. |
14 | FRITSCH M, COELER M, KUNZ K, et al. Light weight polymer-carbon composite current collector for lithium-ion batteries[J]. Batteries, 2020, 6(4): 60. |
15 | YUN J H, HAN G B, LEE Y M, et al. Low resistance flexible current collector for lithium secondary battery[J]. Electrochemical and Solid-State Letters, 2011, 14(8): A116-A119. |
16 | DING Y, ZHANG Q, RUI K, et al. Ultrafast microwave activating polarized electron for scalable porous Al toward high-energy-density batteries[J]. Nano Letters, 2020, 20(12): 8818-8824. |
17 | JO M S, GHOSH S, JEONG S M, et al. Coral-like yolk–shell-structured nickel oxide/carbon composite microspheres for high-performance Li-ion storage anodes[J]. Nano-Micro Letters, 2019, 11(1): 3. |
18 | SA Q N, WANG Y. Ni foam as the current collector for high capacity C-Si composite electrode[J]. Journal of Power Sources, 2012, 208: 46-51. |
19 | WANG J Z, DU N, SONG Z Q, et al. Synthesis of nanoporous three-dimensional current collector for high-performance lithium-ion batteries[J]. RSC Advances, 2013, 3(20): 7543-7548. |
20 | PHAM M T M, DARST J J, WALKER W Q, et al. Prevention of lithium-ion battery thermal runaway using polymer-substrate current collectors[J]. Cell Reports Physical Science, 2021, 2(3): 100360. |
21 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5: 786-793. |
22 | 汪茹, 刘志康, 严超, 等. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 87-98. |
WANG R, LIU Z K, YAN C, et al. Interface strengthening of composite current collectors for high-safety lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 87-98. | |
23 | CHENG F L, YANG W K, LUO X M, et al. Geometrical size effect on tensile properties of ultrathin current collector foils for lithium-ion batteries[J]. Journal of Materials Research, 2022, 37(21): 3708-3719. |
24 | LEDERER M, GRÖGER V, KHATIBI G, et al. Size dependency of mechanical properties of high purity aluminium foils[J]. Materials Science and Engineering: A, 2010, 527(3): 590-599. |
25 | PAN Z, ZHAO P Y, WEI X Q, et al. Characterization of metal foil in anisotropic fracture behavior with dynamic tests[J]. SAE International Journal of Materials and Manufacturing, 2018, doi: 10.4271/2018-01-0108. |
26 | 郭斌, 周健, 单德彬, 等. 黄铜箔拉伸屈服强度的尺寸效应[J]. 金属学报, 2008, 44(4): 419-422. |
GUO B, ZHOU J, SHAN D B, et al. Size effects of yield strength of brass foil in tensile test[J]. Acta Metallurgica Sinica, 2008, 44(4): 419-422. | |
27 | 马秀玲, 李永贞, 姚恩东, 等. 不同厚度电解铜箔的组织与性能研究[J]. 稀有金属材料与工程, 2019, 48(9): 2905-2909. |
MA X L, LI Y Z, YAO E D, et al. Microstructure and properties of electrolytic copper foil with different thicknesses[J]. Rare Metal Materials and Engineering, 2019, 48(9): 2905-2909. | |
28 | 王之桐, 王艳飞. 表面毛化铝箔集流体的力学性能[J]. 中国有色金属学报, 2019, 29(6): 1250-1256. |
WANG Z T, WANG Y F. Mechanical property of surface textured aluminum foil as current collector[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(6): 1250-1256. | |
29 | 朱建宇, 冯捷敏, 王宇晖, 等. 锂离子电池用铜箔集流体的力学性能分析[J]. 储能科学与技术, 2014, 3(4): 360-363. |
ZHU J Y, FENG J M, WANG Y H, et al. Mechanical properties of copper current collection foils of Li-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 360-363. | |
30 | YANG W K, WANG L Y, SONG Z M, et al. Tensile plasticity of miniature specimens for a low alloy steel investigated by digital image correlation technique[J]. Steel Research International, 2021, 92(7): doi: 10.1002/srin.202000685. |
31 | 于国军, 韩振斌, 赵昭. 聚合物复合铜箔生产技术研究现状及展望[J]. 铜业工程, 2023(2): 101-107. |
YU G J, HAN Z B, ZHAO Z. Research status and prospect of polymer composite copper foil production technology[J]. Copper Engineering, 2023(2): 101-107. | |
32 | ALI M K M, IBRAHIM K, HAMAD O S, et al. Deposited Indium Tin Oxide (ITO) thin films by dc-magnetron sputtering on Polyethylene Terephthalate substrate (PET)[J]. Romanian Reports of Physics, 2011, 56(5/6): 730-741. |
33 | JI D, IM P, SHIN S, et al. Specimen geometry effect on experimental tensile mechanical properties of tough hydrogels[J]. Materials, 2023, 16(2): 785. |
34 | ZHAO H Z, YOU Z S, TAO N R, et al. Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility[J]. Acta Materialia, 2021, 210: 116830. |
35 | MIN H G, KANG D J, PARK J H. Comparison of tensile and fatigue properties of copper thin film depending on process method[J]. Applied Sciences, 2020, 10(1): 388. |
36 | 高梦岩, 王畅鸥, 贾妍, 等. 聚酰亚胺薄膜材料的各向异性导热行为研究与进展[J]. 高分子学报, 2021, 52(10): 1283-1297. |
GAO M Y, WANG C O, JIA Y, et al. Research progress in anisotropic thermal conduction behavior of polyimide films[J]. Acta Polymerica Sinica, 2021, 52(10): 1283-1297. | |
37 | STAAB G H, GILAT A. High strain rate response of angle-ply glass/epoxy laminates[J]. Journal of Composite Materials, 1995, 29(10): 1308-1320. |
38 | 何曼君. 高分子物理[M]. 上海: 复旦大学出版社, 2007. |
HE M J. Polymer physics[M]. Shanghai: Fudan University Press, 2007. | |
39 | 王文灏, 叶邦土, 马涛. 拉伸速度对PVC片材拉伸性能的影响[J]. 城市建设理论研究(电子版), 2015(30): 1997-1998. |
40 | ZHANG H Z, JIANG Z H, LIAN J S, et al. Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size[J]. Materials Science and Engineering: A, 2008, 479(1/2): 136-141. |
[1] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||