Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 515-524.doi: 10.19799/j.cnki.2095-4239.2024.0758
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yi LIANG(), Tao WEI, Guangda YIN, Dequan HUANG(
)
Received:
2024-08-10
Revised:
2024-09-03
Online:
2025-02-28
Published:
2025-03-18
Contact:
Dequan HUANG
E-mail:liangyi@guat.edu.cn;hdq2535@163.com
CLC Number:
Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance[J]. Energy Storage Science and Technology, 2025, 14(2): 515-524.
1 | KHAN F M N U, RASUL M G, SAYEM A S M, et al. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review[J]. Journal of Energy Storage, 2023, 71: 108033. DOI:10.1016/j.est. 2023.108033. |
2 | ZHANG Z, ZHAO D C, XU Y Y, et al. A review on electrode materials of fast-charging lithium-ion batteries[J]. The Chemical Record, 2022, 22(10): e202200127. DOI:10.1002/tcr.202200127. |
3 | WANG R H, CUI W S, CHU F L, et al. Lithium metal anodes: Present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. DOI:10.1016/j.jechem.2019.12.024. |
4 | LEE D J, SONG D G, CHO S, et al. Lithium metal interface modification for high-energy batteries: Approaches and characterization[J]. Batteries & Supercaps, 2020, 3(9): 828-859. DOI:10.1002/batt.202000016. |
5 | CAO W Z, ZHANG J N, LI H. Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26: 46-55. DOI:10.1016/j.ensm.2019.12.024. |
6 | CHENG Y F, CHEN J B, CHEN Y M, et al. Lithium host: Advanced architecture components for lithium metal anode[J]. Energy Storage Materials, 2021, 38: 276-298. DOI:10.1016/j.ensm.2021.03.008. |
7 | XU J J, CAI X Y, CAI S M, et al. High-energy lithium-ion batteries: Recent progress and a promising future in applications[J]. Energy & Environmental Materials, 2023, 6(5): e12450. DOI:10.1002/eem2.12450. |
8 | XIA S X, YANG C W, JIANG Z Y, et al. Towards practical lithium metal batteries with composite scaffolded lithium metal: An overview[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 198. DOI:10.1007/s42114-023-00769-3. |
9 | GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. DOI:10.1016/j.jechem.2020.11.034. |
10 | WANG Q Y, LIU B, SHEN Y H, et al. Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): 2101111. DOI:10.1002/advs.202101111. |
11 | HUANG Y F, YANG H T, GAO Y, et al. Mechanism and solutions of lithium dendrite growth in lithium metal batteries[J]. Materials Chemistry Frontiers, 2024, 8(5): 1282-1299. DOI:10.1039/D3QM01151H. |
12 | QI M P, XIE L L, HAN Q, et al. An overview of the key challenges and strategies for lithium metal anodes[J]. Journal of Energy Storage, 2022, 47: 103641. DOI:10.1016/j.est.2021.103641. |
13 | PATHAK R, CHEN K, WU F, et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 448-465. DOI:10.1016/j.ensm.2021.06.015. |
14 | LIU Y C, GAO D, XIANG H F, et al. Research progress on copper-based current collector for lithium metal batteries[J]. Energy & Fuels, 2021, 35(16): 12921-12937. DOI:10.1021/acs.energyfuels. 1c02008. |
15 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. DOI:10.1016/j.jpowsour.2020.229321. |
16 | GAO T J, XU D P, YU Z H, et al. A 3D lithium metal anode reinforced by scalable in situ copper oxide nanostick copper mesh[J]. Journal of Alloys and Compounds, 2021, 865: 158908. DOI:10.1016/j.jallcom.2021.158908. |
17 | AMINU I S, GEANEY H, IMTIAZ S, et al. A copper silicide nanofoam current collector for directly grown Si nanowire networks and their application as lithium-ion anodes[J]. Advanced Functional Materials, 2020, 30(38): 2003278. DOI:10.1002/adfm.202003278. |
18 | LIU H, HE Y X, JIN B, et al. A compact lithiophilic dual metal oxide nanowire array on 3D copper mesh enables dendrite-free long-life lithium metal anodes[J]. Chemical Engineering Journal, 2024, 496: 154072. DOI:10.1016/j.cej.2024.154072. |
19 | YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058. DOI:10.1038/ncomms9058. |
20 | LI Q, ZHU S P, LU Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606422. DOI:10.1002/adfm. 201606422. |
21 | ZHOU B X, BONAKDARPOUR A, STOŠEVSKI I, et al. Modification of Cu current collectors for lithium metal batteries–A review[J]. Progress in Materials Science, 2022, 130: 100996. DOI:10.1016/j.pmatsci.2022.100996. |
22 | FAN Y C, LIAO J P, LUO D X, et al. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes[J]. Chemical Engineering Journal, 2023, 453: 139903. DOI:10.1016/j.cej.2022.139903. |
23 | LIN L, ZHENG H F, LUO Q, et al. Regulating lithium nucleation at the electrolyte/electrode interface in lithium metal batteries[J]. Advanced Functional Materials, 2024, 34(24): 2315201. DOI:10.1002/adfm.202315201. |
24 | LIU Y, LIN L, SUN Y, et al. Three-dimensional SnCu scaffold with layered porous structure enable dendrite-free anode of lithium metal batteries[J]. Journal of Alloys and Compounds, 2022, 928: 166976. DOI:10.1016/j.jallcom.2022.166976. |
25 | LIANG Z, LIN D C, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862-2867. DOI:10.1073/pnas.1518188113. |
26 | SHI Q T, LU C, CAO Y T, et al. Recent developments in current collectors for lithium metal anodes[J]. Materials Chemistry Frontiers, 2023, 7(7): 1298-1311. DOI:10.1039/D3QM00029J. |
27 | CHENG X, BAN J J, WANG Q, et al. "Mechanical-electrochemical" coupling structure and the application as a three-dimensional current collector for lithium metal anode[J]. Applied Surface Science, 2021, 563: 150247. DOI:10.1016/j.apsusc.2021.150247. |
28 | YANG Z H, RUAN Q L, XIONG Y, et al. Highly stable lithium metal anode constructed by three-dimensional lithiophilic materials[J]. Batteries, 2023, 9(1): 30. DOI:10.3390/batteries 9010030. |
29 | ZHANG R, CHEN X, SHEN X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018, 2(4): 764-777. DOI:10.1016/j.joule.2018.02.001. |
[1] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[2] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
[3] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[4] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[5] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
[6] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[7] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
[8] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[9] | Yu HAN, Shengling CAO, Jing NING, Kangli WANG, Kai JIANG, Min ZHOU. Strategies for interfacial modification in lithium metal batteries with polymers [J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503. |
[10] | Lingxuan LI, Zixuan WANG, Chenzi ZHAO, Rui ZHANG, Yang LU, Jiaqi HUANG, Aibing CHEN, Qiang ZHANG. A review of numerical models for composite lithium metal anodes [J]. Energy Storage Science and Technology, 2023, 12(7): 2059-2078. |
[11] | Jidong ZHANG, Zhan YANG, Jianguo HUANG. Fabrication and electrochemical performance of micro-nanostructured C/TiO2/CuMoO4 fibrous composite based on natural cellulose [J]. Energy Storage Science and Technology, 2023, 12(5): 1616-1624. |
[12] | Jin WANG, Shaofei ZHANG, Jinfeng SUN, Tiantian LI. Rapid oxidation of nanoporous alloys by self-combustion and their high-efficiency energy storage performance [J]. Energy Storage Science and Technology, 2023, 12(5): 1480-1489. |
[13] | Junlong ZHOU, Lukang ZHAO, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances in the research of quantum dots anode for alkali metal ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1392-1408. |
[14] | Yuting ZHU, Gongqin YAN, Yuqian LIN. Electrochemical properties and First-principles study of MoS2/rGO composite [J]. Energy Storage Science and Technology, 2023, 12(3): 698-709. |
[15] | Ke XU, Juexi CHEN, Yao MENG, Zhiye YUAN, Xingyan WANG. Preparation of Cu-NiCoP microspheres and their supercapacitive performance [J]. Energy Storage Science and Technology, 2023, 12(2): 357-365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||