Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 525-543.doi: 10.19799/j.cnki.2095-4239.2024.0663
• Energy Storage Materials and Devices • Previous Articles Next Articles
Lishuai ZHANG(), Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG(
)
Received:
2024-07-17
Revised:
2024-08-03
Online:
2025-02-28
Published:
2025-03-18
Contact:
Yanjun ZHONG
E-mail:3185414642@qq.com;yjzhong@scu.edu.cn
CLC Number:
Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues[J]. Energy Storage Science and Technology, 2025, 14(2): 525-543.
Fig.1
Prussian Blue Analogs (PBAs) face-centered cubic geometry and open framework structure (a)[31],when the oxidation state of transition metal ions changes, the insertion of alkali metal ions into the sub-cuboids of the lattice causes structural changes[31], redox mechanism and phase transition schematic of Fe-PBAs (c)[32]"
Figure 5
(a) Rietveld refinement analysis of PBA(Cu)□Fe, (b) SEM image of PBA(Cu)□Feg), (c) rate performance, and (d) cycling performance comparison between PBA, PBA□Fe, and PBA(Cu)□Fe at 500 mA/g[107], (e) In situ XRD result of ZnFeHCF-2. Electrochemical performance of ZnFeHCF-2/hard carbon full cell (f) cycling performance, (g) Rate performance[108]"
Fig.8
Schematic illustration of the synthetic process for PB@ZnO (a); SEM image (b) and TEM image (c) of PB@ZnO; charge and discharge curves for PB and PB@ZnO at 0.2 A/g in the first cycle (d); (e) rate performance of PB@ZnO and PB at different current densities; cycling performance of PB@ZnO and PB at 0.2 A/g(f) [40]"
Table 1
Comparison of sodium storage performance of Fe-PBAs in electrolytes with different compositions"
电解液组成 | 电压范围/V | 比容量/(mAh/g) | 电流密度/(mA/g) | 循环性能 | 文献 |
---|---|---|---|---|---|
1.0 mol/L NaPF6 in EC/PC (1∶1, 体积比) | 2.0~4.2 | 131, 99.8 | 17 340 | 200次,82.9% (170 mA/g) | [ |
1.0 mol/L NaPF6 in PC/EMC/FEC/亚硫酸丙烯酯(PST)/亚硫酸乙烯酯(DTD) (40∶58∶2∶1∶1, 体积比) | 2.0~4.0 | 106.5 | 170 | 500次,96.7% (170 mA/g) | [ |
1.0 mol/L NaClO4 in EC/PC (1∶1, 体积比) | 2.0~3.9 | 58.3 | 1000 | 1000次,59.7% (1000 mA/g) | [ |
1 mol/L NaClO4 in EC/DMC = (1∶1) with 1% (体积分数) FEC | 2.0~4.0 | 105 | 200 | 1000次,69.1% (200 mA/g) | [ |
1.0 mol/L NaClO4 in DEC/EC/FEC (1∶1∶0.05, 体积比) | 2.0~4.0 | 145.3 | 34 | 1000次,54.5% (34 mA/g) | [ |
1 mol/L NaPF6 in PC with 10% (体积分数) FEC | 2.0~4.2 | 96.8 | 9000 | 500次,61.6% (500 mA/g) | [ |
1 mol/L NaPF6 in EC/DEC (1∶1, 体积比) | 2.0~4.2 | 115 | 50 | 150次,96% (50 mA/g) | [ |
1 mol/L NaClO4 in EC/DMC/EMC (1∶1∶1, 体积比) with 5% (体积分数) FEC | 2.0~4.2 | 113 | 1600 | 400次,80% (800 mA/g) | [ |
1 | DETKA K, GÓRECKI K. Selected technologies of electrochemical energy storage—a review[J]. Energies, 2023, 16(13): 5034. DOI: 10.3390/en16135034. |
2 | KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964. DOI: 10.1039/C8TA10513H. |
3 | FANG C, HUANG Y H, ZHANG W X, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(5): 1501727. DOI: 10.1002/aenm.201501727. |
4 | HAN Q G, LI X, WANG F X, et al. Carbon fiber@ pore-ZnO composite as anode materials for structural lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 833: 39-46. DOI: 10.1016/j.jelechem.2018.11.014. |
5 | LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561. DOI: 10.1002/adma. 201800561. |
6 | ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547. DOI: 10.1021/acsenergylett.0c02181. |
7 | LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. DOI: 10.1039/C8EE03727B. |
8 | USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6: 1020-1035. DOI: 10.1038/s41578-021-00324-w. |
9 | CHA S, KIM C, KIM H, et al. Electrochemical properties of micro-sized bismuth anode for sodium ion batteries[J]. Science of Advanced Materials, 2020, 12(9): 1429-1432. DOI: 10.1166/sam.2020.3801. |
10 | LI Y, WU F, LI Y, et al. Ether-based electrolytes for sodium ion batteries[J]. Chemical Society Reviews, 2022, 51(11): 4484-4536. DOI: 10.1039/D1CS00948F. |
11 | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie (International Ed), 2018, 57(1): 102-120. DOI: 10.1002/anie.201703772. |
12 | HASA I, MARIYAPPAN S, SAUREL D, et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics[J]. Journal of Power Sources, 2021, 482: 228872. DOI: 10.1016/j.jpowsour.2020.228872. |
13 | 张洪霞, 李少芳, 赵博, 等. 钠离子电池用铁基正极材料的研究进展[J]. 无机化学学报, 2020, 36(7): 1205-1222. DOI: 10.11862/CJIC.2020.136. |
ZHANG H X, LI S F, ZHAO B, et al. Research progresses on iron-based cathode materials for sodium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(7): 1205-1222. DOI: 10.11862/CJIC.2020.136. | |
14 | CHEN X, FENG X, REN B, et al. High rate and long lifespan sodium-organic batteries using pseudocapacitive porphyrin complexes-based cathode[J]. Nano-Micro Letters, 2021, 13(1): 71. DOI: 10.1007/s40820-021-00593-8. |
15 | ZHANG H, GAO Y, LIU X H, et al. Long-cycle-life cathode materials for sodium-ion batteries toward large-scale energy storage systems[J]. Advanced Energy Materials, 2023, 13(23): 2300149. DOI: 10.1002/aenm.202300149. |
16 | CHEN S Q, WU C, SHEN L F, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700431. DOI: 10.1002/adma.201700431. |
17 | AHSAN Z, CAI Z F, WANG S, et al. Recent development of phosphate based polyanion cathode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(27): 2400373. DOI: 10.1002/aenm.202400373. |
18 | LIU Q N, HU Z, CHEN M Z, et al. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs[J]. Advanced Functional Materials, 2020, 30(14): 1909530. DOI: 10.1002/adfm. 201909530. |
19 | WANG D, DENG Y P, LIU Y H, et al. Sodium-ion batteries towards practical application through gradient Mn-based layer-tunnel cathode[J]. Nano Energy, 2023, 110: 108340. DOI: 10.1016/j.nanoen.2023.108340. |
20 | RAJAGOPALAN R, TANG Y G, JIA C K, et al. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions[J]. Energy & Environmental Science, 2020, 13(6): 1568-1592. DOI: 10.1039/C9EE03637G. |
21 | HUANG J Q, DU R, ZHANG H, et al. Low-cost Prussian blue analogues for sodium-ion batteries and other metal-ion batteries[J]. Chemical Communications, 2023, 59(61): 9320-9335. DOI: 10.1039/d3cc01548c. |
22 | VERMA V, KUMAR S, MANALASTAS W Jr, et al. Progress in rechargeable aqueous zinc-and aluminum-ion battery electrodes: Challenges and outlook[J]. Advanced Sustainable Systems, 2019, 3(1): 1800111. DOI: 10.1002/adsu.201800111. |
23 | LIU Y A, LIU H Q, ZHANG R Z, et al. Recent progress of manganese-based Prussian blue analogue cathode materials for sodium-ion batteries[J]. Ionics, 2024, 30(1): 39-59. DOI: 10.1007/s11581-023-05295-2. |
24 | PENG J, ZHANG W, LIU Q N, et al. Prussian blue analogues for sodium-ion batteries: Past, present, and future[J]. Advanced Materials, 2022, 34(15): e2108384. DOI: 10.1002/adma.202108384. |
25 | ZHOU A J, CHENG W J, WANG W, et al. Hexacyanoferrate-type Prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries[J]. Advanced Energy Materials, 2021, 11(2): 2000943. DOI: 10.1002/aenm. 202000943. |
26 | XIE B X, SUN B Y, GAO T Y, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coordination Chemistry Reviews, 2022, 460: 214478. DOI: 10.1016/j.ccr.2022.214478. |
27 | LI W J, HAN C, CHENG G, et al. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues[J]. Small, 2019, 15(32): e1900470. DOI: 10.1002/smll.201900470. |
28 | SUN J G, YE H L, OH J A S, et al. Elevating the discharge plateau of Prussian blue analogs through low-spin Fe redox induced intercalation pseudocapacitance[J]. Energy Storage Materials, 2021, 43: 182-189. DOI: 10.1016/j.ensm.2021.09.004. |
29 | KUMAR A, YUSUF S, KELLER L. Structural and magnetic properties of Fe [Fe(CN)6] 4H2O[J]. Physical Review B, 2005, 71: 054414. |
30 | KIM D, HWANG T, LIM J M, et al. Hexacyanometallates for sodium-ion batteries: Insights into higher redox potentials using d electronic spin configurations[J]. Physical Chemistry Chemical Physics, 2017, 19(16): 10443-10452. DOI: 10.1039/C7CP00378A. |
31 | HURLBUTT K, WHEELER S, CAPONE I, et al. Prussian blue analogs as battery materials[J]. Joule, 2018, 2(10): 1950-1960. DOI: 10.1016/j.joule.2018.07.017. |
32 | WANG B Q, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. DOI:10.1016/j.isci.2018.04.008. |
33 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1702619. DOI: 10.1002/aenm. 201702619. |
34 | GEBERT F, CORTIE D L, BOUWER J C, et al. Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2021, 60(34): 18519-18526. DOI: 10.1002/anie.202106240. |
35 | WU X Y, DENG W W, QIAN J F, et al. Single-crystal FeFe(CN)6 nanoparticles: A high capacity and high rate cathode for Na-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(35): 10130-10134. DOI: 10.1039/C3TA12036H. |
36 | CHEN M Z, ZHANG Y Y, XING G C, et al. Building high power density of sodium-ion batteries: Importance of multidimensional diffusion pathways in cathode materials[J]. Frontiers in Chemistry, 2020, 8: 152. DOI: 10.3389/fchem.2020.00152. |
37 | NORDSTRAND J, TOLEDO-CARRILLO E, VAFAKHAH S, et al. Ladder mechanisms of ion transport in Prussian blue analogues[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1102-1113. DOI: 10.1021/acsami.1c20910. |
38 | GE L N, SONG Y J, NIU P C, et al. Elaborating the crystal water of Prussian blue for outstanding performance of sodium ion batteries[J]. ACS Nano, 2024, 18(4): 3542-3552. DOI: 10.1021/acsnano.3c11169. |
39 | XIAO Y, XIAO J, ZHAO H K, et al. Prussian blue analogues for sodium-ion battery cathodes: A review of mechanistic insights, current challenges, and future pathways[J]. Small, 2024, 20(35): e2401957. DOI: 10.1002/smll.202401957. |
40 | QIAO Y, WEI G Y, CUI J B, et al. Prussian blue coupling with zinc oxide as a protective layer: An efficient cathode for high-rate sodium-ion batteries[J]. Chemical Communications, 2019, 55(4): 549-552. DOI: 10.1039/C8CC07951J. |
41 | CHEN J S, WEI L, MAHMOOD A, et al. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion[J]. Energy Storage Materials, 2020, 25: 585-612. DOI: 10.1016/j.ensm.2019.09.024. |
42 | PENG J, ZHANG B, HUA W B, et al. A disordered rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angewandte Chemie (International Ed), 2023, 62(6): e202215865. DOI: 10.1002/anie.202215865. |
43 | WU X Y, RU Y, BAI Y, et al. PBA composites and their derivatives in energy and environmental applications[J]. Coordination Chemistry Reviews, 2022, 451: 214260. DOI: 10.1016/j.ccr. 2021.214260. |
44 | ZHANG H, GAO Y, PENG J, et al. Prussian blue analogues with optimized crystal plane orientation and low crystal defects toward 450 wh kg-1 alkali-ion batteries[J]. Angewandte Chemie (International Ed), 2023, 62(27): e202303953. DOI: 10.1002/anie.202303953. |
45 | SONG J, WANG L, LU Y H, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664. DOI: 10.1021/ja512383b. |
46 | NAI J W, LOU X W D. Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion[J]. Advanced Materials, 2019, 31(38): e1706825. DOI: 10.1002/adma.201706825. |
47 | GAO Y T, HUANG Y, PAN H G, et al. Towards defect-free Prussian blue-based battery electrodes[J]. Journal of Alloys and Compounds, 2023, 950: 169886. DOI: 10.1016/j.jallcom. 2023.169886. |
48 | WANG P Y, LI Y H, ZHU D G, et al. Treatment dependent sodium-rich Prussian blue as a cathode material for sodium-ion batteries[J]. Dalton Transactions, 2022, 51(25): 9622-9626. DOI: 10.1039/d2dt01171a. |
49 | 陈娜, 李安琪, 郭子祥, 等. 钠离子电池普鲁士蓝材料结构构建及优化的研究进展 [J]. 储能科学与技术. 2023, 12(11): 3340-3351. |
CHEN N, LI A Q, GUO Z X, et al. Research progress on the construction and optimization of Prussian blue material structure for sodium-ion batteries. Energy Storage Science and Technology, 2023, 12(11), 3340-3351. | |
50 | YAN X M, YANG Y, LIU E S, et al. Improved cycling performance of Prussian blue cathode for sodium ion batteries by controlling operation voltage range[J]. Electrochimica Acta, 2017, 225: 235-242. DOI: 10.1016/j.electacta.2016.12.121. |
51 | YU S L, LI Y, LU Y H, et al. A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries[J]. Journal of Power Sources, 2015, 275: 45-49. DOI: 10.1016/j.jpowsour.2014.10.196. |
52 | CHEN Z Y, FU X Y, ZHANG L L, et al. High-performance Fe-based Prussian blue cathode material for enhancing the activity of low-spin Fe by Cu doping[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5506-5513. DOI: 10.1021/acsami.1c23793. |
53 | LI L, NIE P, CHEN Y B, et al. Novel acetic acid induced Na-rich Prussian blue nanocubes with iron defects as cathodes for sodium ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(19): 12134-12144. DOI: 10.1039/C9TA01965K. |
54 | REN W H, QIN M S, ZHU Z X, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching[J]. Nano Letters, 2017, 17(8): 4713-4718. DOI: 10.1021/acs.nanolett.7b01366. |
55 | OH G, KIM J, KANSARA S, et al. Experimental and computational optimization of Prussian blue analogues as high-performance cathodes for sodium-ion batteries: A review[J]. Journal of Energy Chemistry, 2024, 93: 627-662. DOI: 10.1016/j.jechem.2024.02.013. |
56 | PENG J, WANG J S, YI H C, et al. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs[J]. Advanced Energy Materials, 2018, 8(11): 1702856. DOI: 10.1002/aenm.201702856. |
57 | WU X Y, SHAO M M, WU C H, et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23706-23712. DOI: 10.1021/acsami.6b06880. |
58 | QIN M S, REN W H, MENG J S, et al. Realizing superior Prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11564-11570. DOI: 10.1021/acssuschemeng.9b01454. |
59 | PENG J, GAO Y, ZHANG H, et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2- xMnFe(CN)6 cathodes for all-climate sodium-ion batteries[J]. Angewandte Chemie (International Ed), 2022, 61(32): e202205867. DOI: 10.1002/anie.202205867. |
60 | CHEN R J, HUANG Y X, XIE M, et al. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31669-31676. DOI: 10.1021/acsami.6b10884. |
61 | ZUO D X, WANG C P, WU J W, et al. Effect of co-precipitation pH on the electrochemical properties of Prussian blue electrode materials for sodium-ion batteries[J]. Solid State Ionics, 2019, 336: 120-128. DOI: 10.1016/j.ssi.2019.03.014. |
62 | ZHOU A J, XU Z M, GAO H C, et al. Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries[J]. Small, 2019, 15(42): e1902420. DOI: 10.1002/smll.201902420. |
63 | CHEN J, HUANG K L, LIU S Q. Insoluble metal hexacyanoferrates as supercapacitor electrodes[J]. Electrochemistry Communications, 2008, 10(12): 1851-1855. DOI:10.1016/j.elecom.2008.07.046. |
64 | QIAN J F, ZHOU M, CAO Y L, et al. NaxMyFe(CN)6(M=Fe, co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry, 2012, 18(2): 108-112. DOI: 10.61558/2993-074x.2888 |
65 | SHEN Z L, GUO S H, LIU C L, et al. Na-rich Prussian white cathodes for long-life sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16121-16129. DOI: 10.1021/acssuschemeng.8b02758. |
66 | WANG L, SONG J, QIAO R M, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. DOI: 10.1021/ja510347s. |
67 | WANG L, LU Y H, LIU J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angewandte Chemie (International Ed), 2013, 52(7): 1964-1967. DOI: 10.1002/anie.201206854. |
68 | HUANG Y X, XIE M, WANG Z H, et al. A chemical precipitation method preparing hollow-core-shell heterostructures based on the Prussian blue analogs as cathode for sodium-ion batteries[J]. Small, 2018. 14(28): 1801246. DOI: 10.1002/smll.201801246. |
69 | XIANG J J, HAO Y C, GAO Y T, et al. Tailoring the growth of iron hexacyanoferrates for high-performance cathode of sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 946: 169284. DOI: 10.1016/j.jallcom.2023.169284. |
70 | CHEN Z Y, ZHANG L L, FU X Y, et al. Synergistic modification of Fe-based Prussian blue cathode material based on structural regulation and surface engineering[J]. ACS Applied Materials & Interfaces, 2022, 14(38): 43308-43318. DOI: 10.1021/acsami. 2c11823. |
71 | YAN C X, ZHAO A L, ZHONG F P, et al. A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode[J]. Electrochimica Acta, 2020, 332: 135533. DOI: 10.1016/j.electacta.2019.135533. |
72 | XU Y, CHANG M, FANG C, et al. In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29985-29992. DOI: 10.1021/acsami.9b10312. |
73 | XU Y, WAN J, HUANG L, et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries[J]. Advanced Energy Materials, 2019, 9(4): 1803158. DOI: 10.1002/aenm.201803158. |
74 | PENG F W, YU L, GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(39): 22248-22256. DOI: 10.1039/C9TA08603J. |
75 | CHEN W C, LI S J, XU H Y, et al. Effect of particle dispersion on electrochemical performance of Prussian blue analogues electrode materials for sodium ion batteries[J]. Chemphyschem, 2024, 25(5): e202300960. DOI: 10.1002/cphc.202300960. |
76 | HUANG T B, DU G Y, QI Y R, et al. A Prussian blue analogue as a long-life cathode for liquid-state and solid-state sodium-ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7(20): 3938-3944. DOI: 10.1039/D0QI00872A. |
77 | XIE B X, WANG L G, SHU J, et al. Understanding the structural evolution and lattice water movement for rhombohedral nickel hexacyanoferrate upon sodium migration[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46705-46713. DOI: 10.1021/acsami.9b15073. |
78 | LIU J H, WANG Y C, JIANG N, et al. Vacancies-regulated Prussian blue analogues through precipitation conversion for cathodes in sodium-ion batteries with energy densities over 500 wh/kg[J]. Angewandte Chemie (International Ed), 2024, 63(39): e202400214. DOI: 10.1002/anie.202400214. |
79 | UR REHMAN W, JIANG Z Y, QU Z, et al. Highly crystalline Prussian blue cubes filled with tin oxide as anode materials for lithium-ion batteries[J]. Applied Surface Science, 2022, 604: 154533. DOI: 10.1016/j.apsusc.2022.154533. |
80 | YOU Y, WU X L, YIN Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647. DOI: 10.1039/C3EE44004D. |
81 | LIU Y, WEI G Y, MA M Y, et al. Role of acid in tailoring Prussian blue as cathode for high-performance sodium-ion battery[J]. Chemistry, 2017, 23(63): 15991-15996. DOI: 10.1002/chem.201703081. |
82 | MING H, TORAD N L K, CHIANG Y D, et al. Size- and shape-controlled synthesis of Prussian Blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process[J]. CrystEng Comm, 2012, 14(10): 3387-3396. DOI: 10.1039/C2CE25040C. |
83 | LIU Y J, FAN S W, GAO Y, et al. Isostructural synthesis of iron-based Prussian blue analogs for sodium-ion batteries[J]. Small, 2023, 19(43): e2302687. DOI: 10.1002/smll.202302687. |
84 | WANG P Y, ZHU D G, LI Y H, et al. Buffer solution induced highly crystalline sodium-rich Prussian blue for sodium storage[J]. Chemical Communications, 2024, 60(12): 1603-1606. DOI: 10.1039/D3CC06123J. |
85 | REN W H, ZHU Z X, QIN M S, et al. Prussian white hierarchical nanotubes with surface-controlled charge storage for sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(15): 1806405. DOI: 10.1002/adfm.201806405. |
86 | XU C M, PENG J, LIU X H, et al. Na1.51Fe [Fe(CN)6]0.87·1.83H2O hollow nanospheres via non-aqueous ball-milling route to achieve high initial coulombic efficiency and high rate capability in sodium-ion batteries[J]. Small Methods, 2022, 6(8): 2200404. DOI: 10.1002/smtd.202200404. |
87 | ZHANG P, XU C L, ZHAO J M, et al. Rapid and solvent-free mechanochemical synthesis of Na iron hexacyanoferrate for high-performance Na-ion batteries[J]. Materials Today Energy, 2022, 27: 101027. DOI: 10.1016/j.mtener.2022.101027. |
88 | TANG W, XIE Y Y, PENG F W, et al. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3910-A3917. DOI: 10.1149/2.0701816jes. |
89 | LUO Y, PENG J Y, YIN S M, et al. Acid-assisted ball mill synthesis of carboxyl-functional-group-modified Prussian blue as sodium-ion battery cathode[J]. Nanomaterials, 2022, 12(8): 1290. DOI: 10.3390/nano12081290. |
90 | GONG W Z, WAN M, ZENG R, et al. Ultrafine Prussian blue as a high-rate and long-life sodium-ion battery cathode[J]. Energy Technology, 2019, 7(7): 1900108. DOI: 10.1002/ente.201900108. |
91 | LUCERO M, ARMITAGE D B, YANG X, et al. Ball milling-enabled Fe2.4+ to Fe3+ redox reaction in Prussian blue materials for long-life aqueous sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36366-36372. DOI: 10.1021/acsami. 3c07304. |
92 | YANG J H, WANG H S, LU L H, et al. Large-scale synthesis of berlin green Fe[Fe(CN)6] microcubic crystals[J]. Crystal Growth & Design, 2006, 6(11): 2438-2440. DOI: 10.1021/cg060469r. |
93 | WANG M M, TAO Y M, ZHANG D Y, et al. High rate and cyclic performance of Na3–2 xMgxV2(PO4)3/C cathode for sodium-ion batteries[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 18360-18369. DOI: 10.1007/s10854-020-04381-9. |
94 | BAGGIO B F, VICENTE C, PELEGRINI S, et al. Morphology and structure of electrodeposited Prussian blue and Prussian white thin films[J]. Materials, 2019, 12(7): 1103. DOI: 10.3390/ma12071103. |
95 | LAMPRECHT X, ZELLNER P, YESILBAS G, et al. Fast-charging capability of thin-film Prussian blue analogue electrodes for aqueous sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23951-23962. DOI: 10.1021/acsami.3c02633. |
96 | 李林, 朱登贵, 孙淑敏, 等. 普鲁士蓝及其类似物作为钠离子电池正极材料的研究进展[J]. 分子科学学报, 2023, 39(1): 1-10. DOI: 10.13563/j.cnki.jmolsci.2022.06.005. |
LI L, ZHU D G, SUN S M, et al. Research progress of Prussian blue and its analogues as cathode materials for sodium ion batteries[J]. Journal of Molecular Science, 2023, 39(1): 1-10. DOI: 10.13563/j.cnki.jmolsci.2022.06.005. | |
97 | 陈强, 李敏, 李敬发. 普鲁士蓝类似物及其衍生物在钾离子电池中的应用[J]. 储能科学与技术, 2021, 10(3): 1002-1015. DOI: 10.19799/j.cnki.2095-4239.2021.0029. |
CHEN Q, LI M, LI J F. Application of Prussian blue analogs and their derivatives in potassium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. DOI: 10.19799/j.cnki.2095-4239.2021.0029. | |
98 | TANG X, LIU H, SU D W, et al. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries[J]. Nano Research, 2018, 11(8): 3979-3990. DOI: 10.1007/s12274-018-1979-y. |
99 | FENG J X, TONG Y X, LI G R. Epitaxial growth modulation of hollow topologies for high-performance electrocatalysts[J]. Chem, 2018, 4(9): 2015-2017. DOI: 10.1016/j.chempr.2018.08.021. |
100 | YOU Y, YU X Q, YIN Y X, et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries[J]. Nano Research, 2015, 8(1): 117-128. DOI: 10.1007/s12274-014-0588-7. |
101 | HUANG Y, ZHANG X, JI L, et al. Boosting the sodium storage performance of Prussian blue analogs by single-crystal and high-entropy approach[J]. Energy Storage Materials, 2023, 58: 1-8. DOI: 10.1016/j.ensm.2023.03.011. |
102 | YANG D Z, XU J, LIAO X Z, et al. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries[J]. Chemical Communications, 2014, 50(87): 13377-13380. DOI: 10.1039/c4cc05830e. |
103 | XU Z, SUN Y, XIE J, et al. High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries[J]. Materials Today Sustainability, 2022, 18: 100113. DOI: 10.1016/j.mtsust.2022.100113. |
104 | XI Y M, LU Y C. Electrochemically active Mn-doped iron hexacyanoferrate as the cathode material in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(34): 39022-39030. DOI: 10.1021/acsami.2c07779. |
105 | XIE M, XU M H, HUANG Y X, et al. Na2NixCo1- xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries[J]. Electrochemistry Communications, 2015, 59: 91-94. DOI: 10.1016/j.elecom. 2015.07.014. |
106 | GAO P, CHEN Z, GONG Y X, et al. The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: Synthesis, advanced characterization, and fundamentals[J]. Advanced Energy Materials, 2020, 10(14): 1903780. DOI: 10.1002/aenm.201903780. |
107 | LIU J C, LIU J, TANG M X, et al. Boosting sodium storage in Prussian blue analogs through iron vacancies and copper doping[J]. Advanced Functional Materials, 2024, 34(17): 2314167. DOI: 10.1002/adfm.202314167. |
108 | ZHANG H, PENG J, LI L, et al. Low-cost zinc substitution of iron-based Prussian blue analogs as long lifespan cathode materials for fast charging sodium-ion batteries[J]. Advanced Functional Materials, 2023, 33(2): 2210725. DOI: 10.1002/adfm.202210725. |
109 | 朱子翼, 董鹏, 张举峰, 等. 新一代储能钠离子电池正极材料的改性研究进展[J]. 化工进展, 2020, 39(3): 1043-1056. DOI: 10.16085/j.issn.1000-6613.2019-0840. |
ZHU Z Y, DONG P, ZHANG J F, et al. Research progress on modification of cathode materials for new generation energy storage sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1043-1056. DOI: 10.16085/j.issn.1000-6613.2019-0840. | |
110 | TANG Y, ZHANG W X, XUE L H, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 6036-6041. DOI: 10.1039/C6TA00876C. |
111 | ZHANG Q, FU L, LUAN J Y, et al. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. DOI: 10.1016/j.jpowsour.2018.05.085. |
112 | LI X, SUN X L. Interface design and development of coating materials in lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(30): 1801323. DOI: 10.1002/adfm. 201801323. |
113 | 赵毅伟, 张福华, 颜顺, 等. 普鲁士蓝类钠离子电池正极材料导电性研究进展[J]. 储能科学与技术, 2024, 13(5): 1474-1486. DOI: 10.19799/j.cnki.2095-4239.2023.0895 |
ZHAO Y W, ZHANG F H, YAN S, et al. Research progress on the conductivity of Prussian blue sodium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2024, 13(5): 1474-1486. DOI: 10.19799/j.cnki.2095-4239.2023.0895 | |
114 | WAN M, TANG Y, WANG L L, et al. Core-shell hexacyanoferrate for superior Na-ion batteries[J]. Journal of Power Sources, 2016, 329: 290-296. DOI: 10.1016/j.jpowsour. 2016.08.059. |
115 | JIANG Y Z, YU S L, WANG B Q, et al. Prussian Blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode[J]. Advanced Functional Materials, 2016, 26(29): 5315-5321. DOI: 10.1002/adfm.201600747. |
116 | CHEN Y C, WOO H J, RIZWAN M, et al. Nanoscale morphology control of Na-rich Prussian blue cathode materials for sodium ion batteries with good thermal stability[J]. ACS Applied Energy Materials, 2019, 2(12): 8570-8579. DOI: 10.1021/acsaem.9b01491. |
117 | ZHU P, WANG Y P, LI J, et al. Continuous production of high-capacity iron-based Prussian blue sodium-ion cathode materials using a rotor-stator spinning disk reactor[J]. ACS Applied Energy Materials, 2023, 6(11): 6141-6150. DOI: 10.1021/acsaem.3c00679. |
118 | ZHANG R Z, LIU Y A, LIU H Q, et al. Y-tube assisted coprecipitation synthesis of iron-based Prussian blue analogues cathode materials for sodium-ion batteries[J]. RSC Advances, 2024, 14(17): 12096-12106. DOI: 10.1039/d4ra00762j. |
119 | BAJI D S, NAIR S, SANTHANAGOPALAN D. Chemical reduction of Prussian blue nanocubes to obtain alkali ion containing cathodes and their battery applications[J]. Sustainable Energy & Fuels, 2022, 6(7): 1719-1726. DOI: 10.1039/D2SE00171C. |
120 | WU E A, BANERJEE S, TANG H M, et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries[J]. Nature Communications, 2021, 12(1): 1256. DOI: 10.1038/s41467-021-21488-7. |
121 | HUANG Y X, ZHAO L Z, LI L, et al. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application[J]. Advanced Materials, 2019, 31(21): e1808393. DOI: 10.1002/adma.201808393. |
122 | LI C C, XU H Y, NI L, et al. Nonaqueous liquid electrolytes for sodium-ion batteries: Fundamentals, progress and perspectives[J]. Advanced Energy Materials, 2023, 13(40): 2301758. DOI: 10.1002/aenm.202301758. |
123 | TIAN Z N, ZOU Y G, LIU G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): e2201207. DOI: 10.1002/advs.202201207. |
124 | LIN Z H, XIA Q B, WANG W L, et al. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries[J]. InfoMat, 2019, 1(3): 376-389. DOI: 10.1002/inf2.12023. |
125 | WU F, ZHU N, BAI Y, et al. Highly safe ionic liquid electrolytes for sodium-ion battery: Wide electrochemical window and good thermal stability[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21381-21386. DOI: 10.1021/acsami.6b07054. |
126 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. DOI: 10.1021/cr030203g. |
127 | PIERNAS-MUÑOZ M J, CASTILLO-MARTÍNEZ E, GÓMEZ-CÁMER J L, et al. Optimizing the electrolyte and binder composition for Sodium Prussian Blue, Na1- xFex+(1/3)(CN)6·yH2O, as cathode in sodium ion batteries[J]. Electrochimica Acta, 2016, 200: 123-130. DOI: 10.1016/j.electacta.2016.02.188. |
128 | VIET THIEU Q Q, HOANG H, LE V T, et al. Enhancing electrochemical performance of sodium Prussian blue cathodes for sodium-ion batteries via optimizing alkyl carbonate electrolytes[J]. Ceramics International, 2021, 47(21): 30164-30171. DOI: 10.1016/j.ceramint.2021.07.195. |
129 | CAMACHO P S, WERNERT R, DUTTINE M, et al. Impact of synthesis conditions in Na-rich Prussian blue analogues[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42682-42692. DOI: 10.1021/acsami.1c09378. |
130 | SYED MOHD FADZIL S A F, WOO H J, AZZAHARI A D, et al. Sodium-rich Prussian blue analogue coated by poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate as superior cathode for sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101540. DOI: 10.1016/j.mtchem.2023.101540. |
131 | CHUN J Y, WANG X L, WEI C L, et al. Flexible and free-supporting Prussian blue analogs/MXene film for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2023, 576: 233165. DOI: 10.1016/j.jpowsour.2023.233165. |
132 | YUAN T, FU X P, WANG Y, et al. Enhanced conductivity and stability of Prussian blue cathodes in sodium-ion batteries by surface vapor-phase molecular self-assembly[J]. Nano Research, 2024, 17(5): 4221-4230. DOI: 10.1007/s12274-023-6394-3. |
133 | TANG Y, WANG L, HU J W, et al. Epitaxial nucleation of NaxFeFe(CN)6@rGO with improved lattice regularity as ultrahigh-rate cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2024, 14(7): 2303015. DOI: 10.1002/aenm.202303015. |
134 | CHEN R J, HUANG Y X, XIE M, et al. Preparation of Prussian blue submicron particles with a pore structure by two-step optimization for Na-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2016, 8(25): 16078-16086. DOI: 10.1021/acsami.6b04151. |
135 | ZUO D X, WANG C P, HAN J J, et al. Oriented formation of a Prussian blue nanoflower as a high performance cathode for sodium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(43): 16229-16240. DOI: 10.1021/acssuschemeng.0c05466. |
136 | SONG B Y, XIONG X S, PENG Y, et al. Review of electrolyte additives for secondary sodium batteries[J]. Advanced Energy Materials, 2024, 14(30): 2401407. DOI: 10.1002/aenm. 202401407. |
137 | SHAO T L, LI C, LIU C Y, et al. Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage[J]. Journal of Materials Chemistry A, 2019, 7(4): 1749-1755. DOI: 10.1039/C8TA10860A. |
[1] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
[2] | Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 555-569. |
[3] | Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review [J]. Energy Storage Science and Technology, 2025, 14(2): 544-554. |
[4] | Xunchang JIANG, Kelin YU, Daxiang YANG, Minhui LIAO, Yang ZHOU. Preparation of PDOL-based solid electrolyte by in-situ polymerization and its application in lithium metal batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 1-12. |
[5] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[6] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[7] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[8] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[9] | Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360. |
[10] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[11] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[12] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[13] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[14] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[15] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||