Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2348-2360.doi: 10.19799/j.cnki.2095-4239.2024.0380
• Special Issue on Low Temperature Batteries • Previous Articles Next Articles
Weiqi LIN1(), Qiaoyu LU1, Yuhong CHEN1, Linyuan QIU1, Yurong JI1, Lianyu GUAN1, Xiang DING1,2()
Received:
2024-04-29
Revised:
2024-05-16
Online:
2024-07-28
Published:
2024-07-23
Contact:
Xiang DING
E-mail:78083010@qq.com;dingx@fjnu.edu.cn
CLC Number:
Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360.
Fig. 4
(a) Schematic illustration of effect of Co3+ doping on electrode structure;(b) Cycling performance at 1C for 300 cycles at -40 ℃[26];(c) GITT curves of NCMN cathode material in the first cycle and the chemical diffusion coefficient of Na+ ions as a function of voltage calculated from the GITT profile[27]"
Table 1
Electrochemical properties of typical SIBs cathode materials at low temperatures"
合成方法 | 材料 | 低温容量/(mAh/g) | 低温循环性能/(mAh/g) | 参考文献 |
---|---|---|---|---|
溶胶-凝胶 | Na0.612K0.056MnO2@Na3Zr2Si2PO12 | 119 | -20 ℃,0.1 A/g,150次,82% | [ |
固相 | Na0.75Mn0.6Ni0.3Cu0.1O2 | 65.7 | -20 ℃,1C,300次,90% | [ |
— | Na0.67Co0.2Mn0.8O2@NaTi2(PO4)3 | 115.1 | -20 ℃,0.5C,150次,92.3% | [ |
固相 | Na0.7[Ni0.3Co0.1Mn0.6]0.98Nb0.02O2 | 63.6 | -20 ℃,0.5C,300次,79.3% | [ |
溶胶-凝胶 | Na0.67Mn0.95Sn0.05O2 | 96.6 | — | [ |
固相 | NaMn0.6Al0.4O2@Al(II, III)O x | 151 | -20 ℃,1 A/g,100次,83.2% | [ |
溶胶-凝胶 | Na0.67Mg0.05Fe x Ni y Mn z O2 | 82 | -15 ℃,2C,100次,88% | [ |
溶剂热 | Na0.67Ni0.2Co0.2Mn0.6O2 | 132.2 | -40 ℃,1C,300次,83.9% | [ |
溶胶-凝胶 | Na0.67Ni0.1Co0.1Mn0.8O2 | 147.7 | -20 ℃,0.5C,100次,70% | [ |
— | Na0.78Ni0.31Mn0.67Nb0.02O2 | 69 | -40 ℃,0.5C,800次,94.5% | [ |
— | Na0.696Ni0.329Mn0.671O2 | 62.6 | -30 ℃,0.5C,100次,95% | [ |
固相 | NaNi0.5Mn0.5-x Sb x O2 | 122.3 | -20 ℃,0.1C,100次,90% | [ |
溶胶-凝胶 | Na3Fe0.8VNi0.2(PO4)3 | 96.3 | — | [ |
静电纺丝 | Na4Fe3(PO4)2P2O7@C | 88.5 | -15 ℃,0.05C,700次,80% | [ |
固相 | Na3.5V1.5Mn0.5(PO4)3@C@3DPG | 105.4 | -20 ℃,1C,500次,97% | [ |
— | NaFePO4@C | 114.1 | -20 ℃,2C,1000次,75.8% | [ |
冷冻干燥 | Na3.9Fe2.9Al0.1(PO4)2P2O7 | 76.2 | -20 ℃,2C,1000次,96.3% | [ |
溶胶-凝胶 | Na2.5VTi0.5Al0.5(PO4)3 | 80 | 0 ℃,5C,1200次,89% | [ |
固相 | Na3-2x Ca x V2(PO4)3 | 112.3 | 0 ℃,1C,500次,96.3% | [ |
溶胶-凝胶 | Na3V1.9Zr0.1(PO4)3/NC | 103.7 | -20 ℃,0.1C,100次,94.4% | [ |
固相 | Na4Fe3(PO4)1.9(SiO4)0.1P2O7 | 95.5 | -10 ℃,5C,1000次,93.6% | [ |
固相 | Na3-x K x V2(PO4)3@C/MWCNT | 64.6 | -20 ℃,20C,500次,84.2% | [ |
— | Na3V1.98Mn0.02(PO4)2F3 | 80 | -25 ℃,1C,400次,96.5% | [ |
辅助水热 | Na3V2(PO4)2F3@rGO/CNT | 106.7 | 0 ℃,1C,200次,97.3% | [ |
— | Na4VMn0.7Ni0.3(PO4)3@C | 82 | -40 ℃,1C,160次,98% | [ |
1 | GU X X, QIAO S, REN X L, et al. Multi-core-shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries[J]. Rare Metals, 2021, 40(4): 828-836. |
2 | XU S, YAO K, YANG D, et al. Interfacial engineering of Na3V2(PO4)2O2F Cathode for Low-temperature (-40 ℃) sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2023, 15(11): 14329-14338. |
3 | ZHU X B, WANG L Z. Advances in materials for all-climate sodium-ion batteries[J]. EcoMat, 2020, 2(3): e12043. |
4 | XUE Q, LI S Y, ZHAO Y N, et al. Novel alkaline sodium-ion battery capacitor based on active carbon||Na0.44MnO2 towards low cost, high-rate capability and long-term lifespan[J]. Acta Physico Chimica Sinica, 2023: 2303041. |
5 | ZHANG F, HE B J, XIN Y, et al. Emerging chemistry for wide-temperature sodium-ion batteries[J]. Chemical Reviews, 2024, 124(8): 4778-4821. |
6 | CUI G J, WANG H, YU F P, et al. Scalable synthesis of Na3V2(PO4)3/C with high safety and ultrahigh-rate performance for sodium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2022, 46: 280-286. |
7 | SHEVCHENKO V A, KOMAYKO A I, SIVENKOVA E V, et al. Effect of Ni/Fe/Mn ratio on electrochemical properties of the O3-NaNi1- x- yFexMnyO2 (0.25≤x, y≤0.75) cathode materials for Na-ion batteries[J]. Journal of Power Sources, 2024, 596: 234092. |
8 | GAO N S, GUO Y W, CHEN Y H, et al. Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 958: 170386. |
9 | ZHOU J K, LIU J, LI Y Y, et al. Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 638: 758. |
10 | YUAN T, LI S Q, SUN Y Y, et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides[J]. ACS Nano, 2022, 16(11): 18058-18070. |
11 | SHI Q H, QI R J, FENG X C, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries[J]. Nature Communications, 2022, 13: 3205. |
12 | JIANG N, CHEN L, WANG Y T, et al. Confined construction of porous conductive framework Na3V2(PO4)3 nanocrystals and their ultrahigh rate and microtherm sodium storage performance[J]. Chemical Engineering Science, 2022, 262: 117912. |
13 | ZHOU P F, CHE Z N, LIU J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries[J]. Energy Storage Materials, 2023, 57: 618-627. |
14 | WANG T Y, SU D W, SHANMUKARAJ D, et al. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms[J]. Electrochemical Energy Reviews, 2018, 1(2): 200-237. |
15 | GAO J Q, ZENG J Y, JIAN W S, et al. Aluminum ion chemistry of Na4Fe3(PO4)2(P2O7) for all-climate full Na-ion battery[J]. Science Bulletin, 2024, 69(6): 772-783. |
16 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248. |
17 | WANG J Z, TENG Y X, SU G Q, et al. A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries[J]. Journal of Colloid and Interface Science, 2022, 608(3): 3013-3021. |
18 | HWANG J Y, MYUNG S T, CHOI J U, et al. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(45): 23671-23680. |
19 | MA Z L, XU H X, LIU Y X, et al. Defect-type AlOx nanointerface boosting layered Mn-based oxide cathode for wide-temperature sodium-ion battery[J]. Journal of Materials Chemistry A, 2022, 10(45): 24216-24225. |
20 | SHAO Y Q, WANG X X, LI B C, et al. Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries[J]. Electrochimica Acta, 2023, 442: 141915. |
21 | LI Y, SHI Q H, YIN X P, et al. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage[J]. Chemical Engineering Journal, 2020, 402: 126181. |
22 | LAVELA P, LEYVA J, TIRADO J L. Sustainable, low Ni-containing Mg-doped layered oxides as cathodes for sodium-ion batteries[J]. Dalton Transactions, 2023, 52(46): 17289-17298. |
23 | LI L J, FAN J J, CHEN H, et al. pH-manipulated large-scale synthesis of Na3(VOPO4)2F at low temperature for practical application in sodium ion batteries[J]. New Journal of Chemistry, 2024, 48(10): 4446-4455. |
24 | LI S Y, ZHANG Y Y, LEI K X, et al. Na+/vacancy disordered manganese-based oxide cathode with ultralow strain enabled by tuning charge distribution[J]. Journal of Materials Chemistry A, 2022, 10(19): 10391-10399. |
25 | LI Y, ZHAO Y F, FENG X C, et al. A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries[J]. Science China Materials, 2022, 65(2): 328-336. |
26 | WANG X, YIN X P, FENG X C, et al. Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage[J]. Chemical Engineering Journal, 2022, 428: 130990. |
27 | YUE R Y, XIA F, QI R J, et al. Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance[J]. Chinese Chemical Letters, 2021, 32(2): 849-853. |
28 | LIU S, WAN J, OU M, ZHANG W, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries[J]. Advanced Energy Materials,2023, 13(11): 2203521. |
29 | WANG Q D, ZHOU D, ZHAO C L, et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries[J]. Nature Sustainability, 2024, 7: 338-347. |
30 | HU X F, GUO H, GAO J X, et al. Component regulatory strategy for advanced biphasic sodium layered oxide cathodes[J]. ACS Applied Energy Materials, 2024, 7(2): 460-468. |
31 | DUAN Y, MA Z H, WAN Q X, et al. Optimizing electrochemical performance of Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure via preparing concentration-gradient particles for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 662: 69-75. |
32 | FU H, LI J L, WANG L Y, et al. Na-rich layered transition metal oxides with core/shell structures for improved performance of sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2022, 126(48): 20196-20203. |
33 | LI J B, LI Z Q, TANG S C, et al. Boosted electrochemical performance of Na3V2(PO4)3 at low temperature through synergistical F substitution and construction of interconnected nitrogen-doped carbonaceous network[J]. Journal of Materials Science & Technology, 2023, 150: 159-167. |
34 | LIU B Q, ZHANG Q, LI L, et al. Achieving highly electrochemically active maricite NaFePO4 with ultrafine NaFePO4@C subunits for high rate and low temperature sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 405: 126689. |
35 | ZHAO L J, LIU X H, LI J S, et al. One-step synthesis of three-dimensional Na3V2(PO4)3/carbon frameworks as promising sodium-ion battery cathode[J]. Nanomaterials, 2023, 13(3): 446. |
36 | LI Z C, SUN C, LI M, et al. Na2.5VTi0.5Al0.5(PO4)3 as long lifespan cathode for fast charging sodium-ion batteries[J]. Advanced Functional Materials, 2024: 2315114. |
37 | LI J B, LI Z Q, TANG S C, et al. Improved electrode kinetics of a modified Na3V2(PO4)3 cathode through Zr substitution and nitrogen-doped carbon coating towards robust electrochemical performance at low temperature[J]. Inorganic Chemistry Frontiers, 2022, 9(19): 4962-4973. |
38 | YU H, RUAN X P, WANG J J, et al. From solid-solution MXene to Cr-substituted Na3V2(PO4)3: Breaking the symmetry of sodium ions for high-voltage and ultrahigh-rate cathode performance[J]. ACS Nano, 2022, 16(12): 21174-21185. |
39 | ZHANG J H, TANG L B, ZHANG Y, et al. Polyvinylpyrrolidone assisted synthesized ultra-small Na4Fe3(PO4)2(P2O7) particles embedded in 1D carbon nanoribbons with enhanced room and low temperature sodium storage performance[J]. Journal of Power Sources, 2021, 498: 229907. |
40 | LI Z, ZHANG Y, ZHANG J H, et al. Sodium-ion battery with a wide operation-temperature range from -70 to 100 ℃[J]. Angewandte Chemie International Edition, 2022, 61(13): 2116930. |
41 | LIU S Y, WAN J, OU M Y, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13(11): 2203521. |
42 | SHEN L, LI Y, HU C, et al. A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101506. |
43 | GU Z Y, GUO J Z, SUN Z H, et al. Aliovalent-ion-induced lattice regulation based on charge balance theory: Advanced fluorophosphate cathode for sodium-ion full batteries[J]. Small, 2021, 17(32): 2102010. |
44 | XU S T, ZHU W S, YANG Y, et al. Bimetal-substituted polyanion cathode for sodium-ion batteries: Less vanadium and boosted low-temperature kinetics[J]. Small Structures, 2024, 5(5): 2300369. |
45 | ZHAO Q Y, LI J Y, CHEN M J, et al. Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries[J]. Nano Letters, 2022, 22(23): 9685-9692. |
46 | CHEN P, WU C Y, WANG Z Y, et al. Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks[J]. ACS Applied Energy Materials, 2022, 5(2): 2542-2552. |
47 | GE X C, HE L, GUAN C H, et al. Anion substitution strategy toward an advanced NASICON-Na4Fe3(PO4)2P2O7 cathode for sodium-ion batteries[J]. ACS Nano, 2024, 18(2): 1714-1723. |
48 | YUE L F, WANG J, LI M X, et al. Conductive Ti3C2Tx networks to optimize Na3V2O2(PO4)2F cathodes for improved rate capability and low-temperature operation[J]. Dalton Transactions, 2023, 52(15): 4717-4727. |
49 | LI J B, YUAN Q, HAO J J, et al. Boosted redox kinetics enabling Na3V2(PO4)3 with excellent performance at low temperature through cation substitution and multiwalled carbon nanotube cross-linking[J]. Inorganic Chemistry, 2023, 62(43): 17745-17755. |
50 | LONG T, CHEN P, FENG B, et al. Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode[J]. Chinese Chemical Letters, 2024, 35(4): 109267. |
51 | SHI C L, XU J L, TAO T, et al. Zero-strain Na3V2(PO4)2F3 @Rgo/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance[J]. Small Methods, 2024, 8(3): e2301277. |
52 | REN K R, WANG J C, TIAN S H, et al. Iron-based Prussian blue coupled with polydopamine film for advanced sodium-ion batteries[J]. Materials Research Bulletin, 2023, 166: 112351. |
53 | SYED MOHD FADZIL S A F, WOO H J, AZZAHARI A D, et al. Sodium-rich Prussian blue analogue coated by poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate as superior cathode for sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101540. |
54 | ZHANG L L, CHEN Z Y, FU X Y, et al. Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue[J]. Chemical Engineering Journal, 2022, 433: 133739. |
55 | MA X H, WEI Y Y, WU Y D, et al. High crystalline Na2Ni[Fe(CN)6]particles for a high-stability and low-temperature sodium-ion batteries cathode[J]. Electrochimica Acta, 2019, 297: 392-397. |
56 | WEI C, FU X Y, ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal, 2021, 421: 127760. |
57 | PENG J, ZHANG B, HUA W B, et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angewandte Chemie (International Ed in English), 2023, 62(6): e202215865. |
58 | ZHANG Q, FU L, LUAN J Y, et al. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. |
59 | REN W H, QIN M S, ZHU Z X, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching[J]. Nano Letters, 2017, 17(8): 4713-4718. |
60 | LIM C Q X, WANG T, ONG E W Y, et al. High-capacity sodium–prussian blue rechargeable battery through chelation-induced nano-porosity[J]. Advanced Materials Interfaces, 2020, 7(21): 2000853. |
61 | LUO Y, PENG J Y, YAN Y W. Self-induced cobalt-derived hollow structure Prussian blue as a cathode for sodium-ion batteries[J]. RSC Advances, 2021, 11(50): 31827-31833. |
62 | HU H, LIU W F, ZHU M L, et al. Yolk-shell Prussian blue nanoparticles with fast ion diffusion for sodium-ion battery[J]. Materials Letters, 2019, 249: 206-209. |
[1] | Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150. |
[2] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[3] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[4] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[5] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[6] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[7] | Shuyuan CHEN, Chen CHENG, Xiao XIA, Huanxin JU, Liang ZHANG. Research progress in the X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 113-129. |
[8] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[9] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[10] | Shangzhuo LI, Yutong LONG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Advances toward polyanionic cathode materials for potassium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1348-1363. |
[11] | Qingfei MENG, Rui YANG, Chenglong JIN, Yuliang CAO, Wenjie LI, Zhou ZHOU, Jiliang WU. Preparation and performance of high-capacity Cr8O21 as a cathode material for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(10): 3049-3055. |
[12] | Mengyang ZU, Meng ZHANG, Zikun LI, Ling HUANG. Cycle performance and degradation mechanism of Ni-Rich NCA, NCM, and NCMA [J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. |
[13] | Shaocong WANG, Wei LI, Ruiqin HUANG, Yifei GUO, Zheng LIU. Progress of the Jahn-Teller effect suppression method for manganese-based sodium-ion battery cathode materials [J]. Energy Storage Science and Technology, 2023, 12(1): 139-149. |
[14] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[15] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||