Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 139-149.doi: 10.19799/j.cnki.2095-4239.2022.0337
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shaocong WANG(), Wei LI(), Ruiqin HUANG, Yifei GUO, Zheng LIU()
Received:
2022-06-17
Revised:
2022-06-26
Online:
2023-01-05
Published:
2023-02-08
Contact:
Wei LI, Zheng LIU
E-mail:1012780687@qq.com;liwei1986gllg@163.com;lisa4.6@163.com
CLC Number:
Shaocong WANG, Wei LI, Ruiqin HUANG, Yifei GUO, Zheng LIU. Progress of the Jahn-Teller effect suppression method for manganese-based sodium-ion battery cathode materials[J]. Energy Storage Science and Technology, 2023, 12(1): 139-149.
Fig. 1
Schematic diagram of the Jahn-Teller (J-T) effect in octahedral MnO6: (a) Schematic diagram of octahedral MnO6 before and after J-T distortion; (b) Molecular orbital energy diagram of octahedral MnO6 and the electronic orbitals of Mn2+/Mn3+/Mn4+ ions; (c) Calculated differential charge densities of octahedral Mn3+O6 and Mn4+O6. The blue and yellow areas represent the falling and rising electron densities, respectively. The equivalence plane of the charge density is set to 0.015 e/Bohr; (d) Schematic diagram of Mn3d orbitals with high/low spin Mn3+ ions"
1 | HUANG Q A, HUI R, WANG B W, et al. A review of AC impedance modeling and validation in SOFC diagnosis[J]. Electrochimica Acta, 2007, 52(28): 8144-8164. |
2 | HABTE B T, JIANG F M. Effect of microstructure morphology on Li-ion battery graphite anode performance: Electrochemical impedance spectroscopy modeling and analysis[J]. Solid State Ionics, 2018, 314: 81-91. |
3 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
4 | 闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886. |
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886. | |
5 | CHANG B Y, AHN E, PARK S M. Real-time staircase cyclic voltammetry Fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold[J]. The Journal of Physical Chemistry C, 2008, 112(43): 16902-16909. |
6 | JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
7 | 张玉婷, 徐天野, 王振华, 等. 钠离子电池关键电极材料研究进展[J]. 电子元件与材料, 2020, 39(11): 21-32. |
ZHANG Y T, XU T Y, WANG Z H, et al. Recent advances of electrode materials for sodium ion battery[J]. Electronic Components and Materials, 2020, 39(11): 21-32. | |
8 | REN M, FANG H Y, WANG C C, et al. Advances on manganese-oxide-based cathodes for Na-ion batteries[J]. Energy & Fuels, 2020, 34(11): 13412-13426. |
9 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
10 | LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Physical Chemistry Chemical Physics: PCCP, 2013, 15(9): 3304-3312. |
11 | LIU S Q, WANG B Y, ZHANG X, et al. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries[J]. Matter, 2021, 4(5): 1511-1527. |
12 | 王勇, 刘雯, 郭瑞, 等. 钠离子电池正极材料研究进展[J]. 化工进展, 2018, 37(8): 3056-3066. |
WANG Y, LIU W, GUO R, et al. Recent development of cathode materials for sodium-ion batteries[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3056-3066. | |
13 | 龙云飞, 苏静, 吕小艳, 等. 锂/钠离子电池过渡金属氟磷酸盐正极材料研究进展[J]. 无机盐工业, 2020, 52(3): 28-34, 38. |
LONG Y F, SU J, LÜ X Y, et al. Advances in transition metal fluoride phosphate cathode materials for lithium-ion batteries and sodium-ion batteries[J]. Inorganic Chemicals Industry, 2020, 52(3): 28-34, 38. | |
14 | FANG T C, GUO S H, JIANG K Z, et al. Revealing the critical role of titanium in layered manganese-based oxides toward advanced sodium-ion batteries via a combined experimental and theoretical study[J]. Small Methods, 2019, 3(4): doi: 10.1002/smtd.201800183. |
15 | GAO X, CHEN J, LIU H Q, et al. Copper-substituted NaxMO2 (M=Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn(III) formation[J]. Chemical Engineering Journal, 2021, 406: doi: 10.1016/j.cej.2020.126830. |
16 | LIN X C, HOU X, WU X B, et al. Exploiting Na2MnPO4F as a high-capacity and well-reversible cathode material for Na-ion batteries[J]. RSC Adv, 2014, 4(77): 40985-40993. |
17 | GHOSH M P, DATTA S, SHARMA R, et al. Copper doped nickel ferrite nanoparticles: Jahn-Teller distortion and its effect on microstructural, magnetic and electronic properties[J]. Materials Science and Engineering: B, 2021, 263: doi: 10.1016/j.mseb.2020.114864. |
18 | GHOSH S, BARMAN N, SENGUTTUVAN P. Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of NASICON-NaxVMn0.75M0.25(PO4)3 (M = Mg and Al) cathodes for sodium-ion batteries[J]. Small, 2020, 16(45): doi: 10.1002/smll.202003973. |
19 | HAN M H, GONZALO E, SINGH G, et al. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(1): 81-102. |
20 | QIU B, YIN C, XIA Y G, et al. Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3661-3666. |
21 | ZHANG P P, ZHAI X H, HUANG H, et al. Synergistic Na+ and F- co-doping modification strategy to improve the electrochemical performance of Li-rich Li1 ·20Mn0 ·54Ni0 ·13Co0 ·13O2 cathode[J]. Ceramics International, 2020, 46(15): 24723-24736. |
22 | ZHENG J M, WU X B, YANG Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation[J]. Electrochimica Acta, 2013, 105: 200-208. |
23 | ZHANG L, WANG C C, LIU Y C, et al. Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 426: doi: 10.1016/j.cej.2021.130813. |
24 | JAHN Teller. Stability of polyatomic molecules in degenerate electronic states II-Spin degeneracy[C]//Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1938, 164(916): 117-131. |
25 | LONGUET-Higgins H C. The intersection of potential energy surfaces in polyatomic molecules[C]//Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 1975, 344(1637): 147-156. |
26 | LONGUET-Higgins H C. Studies of the Jahn-Teller effect II. The dynamical problem[C]//Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1958, 244(1236): 1-16. |
27 | KULKA A, MARINO C, WALCZAK K, et al. Influence of Na/Mn arrangements and P2/P'2 phase ratio on the electrochemical performance of NaxMnO2 cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(12): 6022-6033. |
28 | CLÉMENT R J, BILLAUD J, ROBERT ARMSTRONG A, et al. Structurally stable Mg-doped P2-Na2/3Mn1- yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251. |
29 | CHOI J U, PARK Y J, JO J H, et al. Unraveling the role of earth-abundant Fe in the suppression of jahn-teller distortion of P'2-type Na2/3MnO2: Experimental and theoretical studies[J]. ACS Applied Materials & Interfaces, 2018, 10(48): 40978-40984. |
30 | LI S Y, ZHU K L, ZHAO D N, et al. Porous LiMn2O4 with Al2O3 coating as high-performance positive materials[J]. Ionics, 2019, 25(5): 1991-1998. |
31 | STRELTSOV S V, KHOMSKII D I. Jahn-Teller effect and spin-orbit coupling: Friends or foes? [J]. Physical Review X, 2020, 10(3): doi: 10.1103/physrevx.10.031043. |
32 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
33 | XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): doi: 10.1002/adfm.202001334. |
34 | LING Y X, ZHOU J, GUO S, et al. Copper-stabilized P'2-type layered manganese oxide cathodes for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(49): 58665-58673. |
35 | RODRÍGUEZ R A, PÉREZ-CAPPE E L, LAFFITA Y M, et al. Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect[J]. Solid State Ionics, 2018, 324: 77-86. |
36 | KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and manganese stoichiometry of P2-type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 55(41): 12760-12763. |
37 | ZHANG H Z, QIAO Q Q, LI G R, et al. PO4 3- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries[J]. J Mater Chem A, 2014, 2(20): 7454-7460. |
38 | AN J, SHI L Y, CHEN G R, et al. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(37): 19738-19744. |
39 | YANG L, LIU Z P, SHEN X, et al. Effect of vacancy-tailored Mn3+ spinning on enhancing structural stability[J]. Energy Storage Materials, 2022, 44: 231-238. |
40 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. |
41 | NAYAK P K, GRINBLAT J, LEVI M, et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502398. |
42 | ZHAO S, BAI Y, CHANG Q J, et al. Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries[J]. Electrochimica Acta, 2013, 108: 727-735. |
43 | LIU H W, CHENG C X, ZONG Q H, et al. The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries[J]. Materials Chemistry and Physics, 2007, 101(2/3): 276-279. |
44 | YU L H, QIU X P, XI J Y, et al. Enhanced high-potential and elevated-temperature cycling stability of LiMn2O4 cathode by TiO2 modification for Li-ion battery[J]. Electrochimica Acta, 2006, 51(28): 6406-6411. |
45 | ZHAO H Y, GAO X Y, LI Y F, et al. Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material[J]. Ceramics International, 2019, 45(14): 17591-17597. |
46 | JIANG J B, LI W, DENG H J, et al. Research on improving the electrochemical performance of LiMn2O4 via Cr-doping[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(1): 125-129. |
47 | WANG S H, YANG J, WU X B, et al. Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system[J]. Journal of Power Sources, 2014, 245: 570-578. |
48 | ZHANG S, DENG W T, MOMEN R, et al. Element substitution of a spinel LiMn2O4 cathode[J]. Journal of Materials Chemistry A, 2021, 9(38): 21532-21550. |
[1] | Mengyang ZU, Meng ZHANG, Zikun LI, Ling HUANG. Cycle performance and degradation mechanism of Ni-Rich NCA, NCM, and NCMA [J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. |
[2] | Kai ZHANG, Youlong XU. Research progress and development trend of sodium manganate cathode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 86-110. |
[3] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[4] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[5] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[6] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[7] | Qi YAN, Yuanqi LAN, Wenjiao YAO, Yongbing TANG. Recent development of polyanionic cathodes for second ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 872-886. |
[8] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[9] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[10] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[11] | Hongming YI, Zhiqiang LYU, Huamin ZHANG, Mingming SONG, Qiong ZHENG, Xianfeng LI. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. |
[12] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[13] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[14] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[15] | Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||