Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (7): 2361-2376.doi: 10.19799/j.cnki.2095-4239.2024.0533
Previous Articles Next Articles
Junfeng HAO(), Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2024-06-17
Revised:
2024-07-01
Online:
2024-07-28
Published:
2024-06-25
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024)[J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376.
1 | SUN Y J, WANG Y S, WANG S, et al. Bulk-to-surface engineering allows for extremely stable co-free Ni-rich cathodes for rechargeable batteries[J]. Journal of Materials Science, 2023, 58(25): 10428-10440. DOI: 10.1007/s10853-023-08676-0. |
2 | LI C, LIN Y, LIU J, et al. Liquid-phase preparation of low-tortuosity composite cathode for high active material content all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024: 2400985. DOI: 10.1002/aenm.202400985. |
3 | ZHAO C, WANG C W, LIU X, et al. Suppressing strain propagation in ultrahigh-Ni cathodes during fast charging via epitaxial entropy-assisted coating[J]. Nature Energy, 2024, 9: 345-356. DOI: 10.1038/s41560-024-01465-2. |
4 | LIU Z F, ZHENG S, ZHOU Y K, et al. Enhancing the electrochemical performance of single-crystal LiNi0.8Co0.1Mn0.1O2 cathode material by phosphorus doping[J]. Chemical Engineering Science, 2024, 285: 119627. DOI: 10.1016/j.ces.2023.119627. |
5 | RYU H H, LIM H W, LEE S G, et al. Near-surface reconstruction in Ni-rich layered cathodes for high-performance lithium-ion batteries[J]. Nature Energy, 2024, 9: 47-56. DOI: 10.1038/s41560-023-01403-8. |
6 | TIAN J S, WANG G, ZENG W H, et al. A bimetal strategy for suppressing oxygen release of 4.6V high-voltage single-crystal high-nickel cathode[J]. Energy Storage Materials, 2024, 68: 103344. DOI: 10.1016/j.ensm.2024.103344. |
7 | WANG L L, MUKHERJEE A, KUO C Y, et al. High-energy all-solid-state lithium batteries enabled by co-free LiNiO2 cathodes with robust outside-in structures[J]. Nature Nanotechnology, 2024, 19(2): 208-218. DOI: 10.1038/s41565-023-01519-8. |
8 | WANG Y Y, LIANG Z M, LIU Z C, et al. Synergy of epitaxial layer and bulk doping enables structural rigidity of cobalt-free ultrahigh-nickel oxide cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2023, 33(52): 2308152. DOI: 10.1002/adfm.202308152. |
9 | LEE D, MESNIER A, MANTHIRAM A. Crack-free single-crystalline LiNiO2 for high energy density all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303490. DOI: 10.1002/aenm.202303490. |
10 | WANG Q D, YAO Z P, WANG J L, et al. Chemical short-range disorder in lithium oxide cathodes[J]. Nature, 2024, 629(8011): 341-347. DOI: 10.1038/s41586-024-07362-8. |
11 | CAI Z J, OUYANG B, HAU H M, et al. In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials[J]. Nature Energy, 2024, 9: 27-36. DOI: 10.1038/s41560-023-01375-9. |
12 | CAO J Q, SHI Y S, GAO A S, et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries[J]. Nature Communications, 2024, 15(1): 1354. DOI: 10.1038/s41467-024-45613-4. |
13 | LI F H, WU H, WEN H, et al. Constructing a stable integrated silicon electrode with efficient lithium storage performance through multidimensional structural design[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8802-8812. DOI: 10.1021/acsami.3c17326. |
14 | LIU W J, SU S X, WANG Y, et al. Constructing a stable conductive network for high-performance silicon-based anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 10703-10713. DOI: 10.1021/acsami.3c17942. |
15 | WANG L, LU J J, LI S Y, et al. Controllable interface engineering for the preparation of high rate silicon anode[J]. Advanced Functional Materials, 2024: 2403574. DOI: 10.1002/adfm.202403574. |
16 | YU X R, WANG Z C, DENG X, et al. Amide-modulated gel electrolytes enable nickel-rich cathodes with enhanced interphase stability at 90 ℃[J]. ACS Energy Letters, 2024, 9(4): 1826-1834. DOI: 10.1021/acsenergylett.4c00379. |
17 | GICHA B B, TUFA L T, NWAJI N, et al. Advances in all-solid-state lithium-sulfur batteries for commercialization[J]. Nano-Micro Letters, 2024, 16(1): 172. DOI: 10.1007/s40820-024-01385-6. |
18 | ZHANG D C, LIU Y X, YANG S, et al. Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries[J]. Advanced Materials, 2024: 2401549. DOI: 10.1002/adma.202401549. |
19 | RUI X Y, HUA R, REN D S, et al. In situ polymerization facilitating practical high-safety quasi-solid-state batteries[J]. Advanced Materials, 2024: e2402401. DOI: 10.1002/adma.202402401. |
20 | WANG H C, YANG Y L, GAO C, et al. An entanglement association polymer electrolyte for Li-metal batteries[J]. Nature Communications, 2024, 15(1): 2500. DOI: 10.1038/s41467-024-46883-8. |
21 | ZHANG W R, KOVERGA V, LIU S F, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024, 9: 386-400. DOI: 10.1038/s41560-023-01443-0. |
22 | LIU Y X, WANG S Q, CHEN W C, et al. 5.1µm ion-regulated rigid quasi-solid electrolyte constructed by bridging fast Li-ion transfer channels for lithium metal batteries[J]. Advanced Materials, 2024: 2401837. DOI: 10.1002/adma.202401837. |
23 | GAO Y J, ZHANG S M, ZHAO F P, et al. Fluorinated superionic oxychloride solid electrolytes for high-voltage all-solid-state lithium batteries[J]. ACS Energy Letters, 2024, 9(4): 1735-1742. DOI: 10.1021/acsenergylett.3c02243. |
24 | YANG K, MA J B, LI Y H, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries[J]. Journal of the American Chemical Society, 2024: DOI: 10.1021/jacs.4c00976. |
25 | WU Q, FANG M D, JIAO S Z, et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries[J]. Nature Communications, 2023, 14(1): 6296. DOI: 10.1038/s41467-023-41808-3. |
26 | AIMI A, ONODERA H, SHIMONISHI Y, et al. High Li-ion conductivity in pyrochlore-type solid electrolyte Li2- xLa(1+ x)/3M2O6F (M = Nb, Ta)[J]. Chemistry of Materials, 2024, 36(8): 3717-3725. DOI: 10.1021/acs.chemmater.3c03288. |
27 | CHIEN P H, OUYANG B, FENG X Y, et al. Promoting fast ion conduction in Li-argyrodite through lithium sublattice engineering[J]. Chemistry of Materials, 2024, 36(1): 382-393. DOI: 10.1021/acs.chemmater.3c02269. |
28 | POUDEL T P, DECK M J, WANG P B, et al. Transforming Li3PS4 via halide incorporation: A path to improved ionic conductivity and stability in all-solid-state batteries[J]. Advanced Functional Materials, 2024, 34(4): 2309656. DOI: 10.1002/adfm.202309656. |
29 | WANG D X, SHI H T, CUI W H, et al. Li-argyrodite solid-state electrolytes with lithium compatibility and air stability for all-solid-state batteries[J]. Journal of Materials Chemistry A, 2024, 12(18): 10863-10874. DOI: 10.1039/D3TA07453F. |
30 | KIM Y, JUAREZ-YESCAS C, LIAO D W, et al. Thin free-standing sulfide/halide bilayer electrolytes for solid-state batteries using slurry processing and lamination[J]. ACS Energy Letters, 2024, 9(4): 1353-1360. DOI: 10.1021/acsenergylett.4c00092. |
31 | SONG Z Y, WANG T R, YANG H, et al. Promoting high-voltage stability through local lattice distortion of halide solid electrolytes[J]. Nature Communications, 2024, 15(1): 1481. DOI: 10.1038/s41467-024-45864-1. |
32 | ZHAN X, LI M, ZHAO X L, et al. Self-assembled hydrated copper coordination compounds as ionic conductors for room temperature solid-state batteries[J]. Nature Communications, 2024, 15(1): 1056. DOI: 10.1038/s41467-024-45372-2. |
33 | JIANG Z P, YANG T, LI C, et al. Synergistic additives enabling stable cycling of ether electrolyte in 4.4V Ni-rich/Li metal batteries[J]. Advanced Functional Materials, 2023, 33(51): 2306868. DOI: 10.1002/adfm.202306868. |
34 | ZHANG Y M, CAO Y, ZHANG B S, et al. Rational molecular engineering via electron reconfiguration toward robust dual-electrode/electrolyte interphases for high-performance lithium metal batteries[J]. ACS Nano, 2024, 18(22): 14764-14778. DOI: 10.1021/acsnano.4c04517. |
35 | DENG C L, YANG B B, LIANG Y H, et al. Bipolar polymeric protective layer for dendrite-free and corrosion-resistant lithium metal anode in ethylene carbonate electrolyte[J]. Angewandte Chemie International Edition, 2024, 63(17): e202400619. DOI: 10.1002/anie.202400619. |
36 | KUBOT M, BALKE L, SCHOLZ J, et al. High-voltage instability of vinylene carbonate (VC): Impact of formed poly-VC on interphases and toxicity[J]. Advanced Science, 2024, 11(1): e2305282. DOI: 10.1002/advs.202305282. |
37 | LI Y X, DING F W, SHAO Y Y, et al. Solvation structure and derived interphase tuning for high-voltage Ni-rich lithium metal batteries with high safety using gem-difluorinated ionic liquid based dual-salt electrolytes[J]. Angewandte Chemie International Edition, 2024, 63(8): 2317148. DOI: 10.1002/anie.202317148. |
38 | DEGUCHI M, TAZOE D, TODOROV Y M, et al. Functional electrolyte: Highly-safe LIB using branched carboxylic acid ester as electrolyte additive[J]. Journal of the Electrochemical Society, 2024, 171(4): 040536. DOI: 10.1149/1945-7111/ad39cb. |
39 | TUUL K, MAHER S M, FLORAS C, et al. Exceptional performance of Li-ion battery cells with liquid electrolyte at 100 ℃[J]. Journal of the Electrochemical Society, 2024, 171(4): 040510. DOI: 10.1149/1945-7111/ad36e7. |
40 | YANG G L, HUANG Z H, MAJEED I, et al. A straightforward approach to improve NCM523/graphite pouch battery performance in a wide temperature range at 4.35 V using film-forming additive N-phenylimidodisulfuryl fluoride (PhFSI)[J]. Journal of Materials Chemistry A, 2024, 12(17): 10242-10251. DOI: 10.1039/D4TA00311J. |
41 | YU H F, YANG Z F, HAN Q, et al. Operando building of a superior interface hybrid film enables chemomechanically durable co-free Ni-rich cathodes[J]. ACS Nano, 2024, 18(20): 13428-13436. DOI: 10.1021/acsnano.4c04125. |
42 | ZHANG Y L, CHEN Y Q, HE Q, et al. Interface engineering strategy via electron-defect trimethyl borate additive toward 4.7 V ultrahigh-nickel LiNi0.9Co0.05Mn0.05O2 battery[J]. Journal of Energy Chemistry, 2024, 92: 639-647. DOI: 10.1016/j.jechem.2024.02.004. |
43 | FAN X Y, LIU M T, CHEN T L, et al. Reconstructing inorganic-rich interphases by nonflammable electrolytes for high-voltage and low-temperature LiNi0.5Mn1.5O4 cathodes[J]. Advanced Functional Materials, 2024: 2400996. DOI: 10.1002/adfm.202400996. |
44 | BAI Z W, YING Z H, ZHANG F Q, et al. Enabling high stability of co-free LiNiO2 cathode via a sulfide-enriched cathode electrolyte interface[J]. ACS Energy Letters, 2024, 9(6): 2717-2726. DOI: 10.1021/acsenergylett.4c00652. |
45 | CHEN S M, ZHENG G R, YAO X M, et al. Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. DOI: 10.1021/acsnano.3c12823. |
46 | LI A M, BORODIN O, POLLARD T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922-929. DOI: 10.1038/s41557-024-01497-x. |
47 | LI W, WANG H W, ZHANG J K, et al. Non-sacrificial additive enables a non-passivating cathode interface for 4.6V Li||LiCoO2 batteries[J]. Advanced Energy Materials, 2024, 14(11): 2303458. DOI: 10.1002/aenm.202303458. |
48 | CHENG H R, MA Z, KUMAR P, et al. Non-flammable electrolyte mediated by solvation chemistry toward high-voltage lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(4): 1604-1616. DOI: 10.1021/acsenergylett.3c02789. |
49 | CUI Z Z, JIA Z Z, RUAN D G, et al. Molecular anchoring of free solvents for high-voltage and high-safety lithium metal batteries[J]. Nature Communications, 2024, 15(1): 2033. DOI: 10.1038/s41467-024-46186-y. |
50 | HU X, YU J H, WANG Y, et al. A lithium intrusion-blocking interfacial shield for wide-pressure-range solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(7): 2308275. DOI: 10.1002/adma.202308275. |
51 | NIE L, ZHU J L, WU X Y, et al. A large-scale fabrication of flexible, ultrathin, and robust solid electrolyte for solid-state lithium-sulfur batteries[J]. Advanced Materials, 2024: e2400115. DOI: 10.1002/adma.202400115. |
52 | POKHAREL J, CRESCE A, PANT B, et al. Manipulating the diffusion energy barrier at the lithium metal electrolyte interface for dendrite-free long-life batteries[J]. Nature Communications, 2024, 15(1): 3085. DOI: 10.1038/s41467-024-47521-z. |
53 | GUO Y, PAN S Y, YI X R, et al. Fluorinating all interfaces enables super-stable solid-state lithium batteries by in situ conversion of detrimental surface Li2CO3[J]. Advanced Materials, 2024, 36(13): e2308493. DOI: 10.1002/adma.202308493. |
54 | KIM K H, LEE M J, RYU M, et al. Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries[J]. Nature Communications, 2024, 15(1): 3586. DOI: 10.1038/s41467-024-48021-w. |
55 | YE L H, LU Y, WANG Y C, et al. Fast cycling of lithium metal in solid-state batteries by constriction-susceptible anode materials[J]. Nature Materials, 2024, 23(2): 244-251. DOI: 10.1038/s41563-023-01722-x. |
56 | CAO Q B, SUN Z T, YE K, et al. Stacking pressure homogenizes the electrochemical lithiation reaction of silicon anode in solid-state batteries[J]. Energy Storage Materials, 2024, 67: 103246. DOI: 10.1016/j.ensm.2024.103246. |
57 | SU H, LI J R, ZHONG Y, et al. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries[J]. Nature Communications, 2024, 15(1): 4202. DOI: 10.1038/s41467-024-48585-7. |
58 | LIM H, JUN S, SONG Y B, et al. Rationally designed conversion-type lithium metal protective layer for all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(12): 2303762. DOI: 10.1002/aenm.202303762. |
59 | WAN H L, ZHANG B, LIU S F, et al. Interface design for high-performance all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303046. DOI: 10.1002/aenm.202303046. |
60 | XU X Q, CHU S Y, XU S, et al. Self-constructing a lattice-oxygen-stabilized interface in Li-rich cathodes to enable high-energy all-solid-state batteries[J]. Energy & Environmental Science, 2024, 17(9): 3052-3059. DOI: 10.1039/D4EE00938J. |
61 | ZHANG H S, LEI X C, SU D, et al. Surface lattice modulation enables stable cycling of high-loading All-solid-state batteries at high voltages[J]. Angewandte Chemie International Edition, 2024, 63(16): e202400562. DOI: 10.1002/anie.202400562. |
62 | CHEN Y T, JANG J, OH J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024: 2304327. DOI: 10.1002/aenm.202304327. |
63 | LU P S, GONG S, WANG C H, et al. Superior low-temperature all-solid-state battery enabled by high-ionic-conductivity and low-energy-barrier interface[J]. ACS Nano, 2024, 18(10): 7334-7345. DOI: 10.1021/acsnano.3c07023. |
64 | KIM S Y, BAK S M, JUN K, et al. Revealing dynamic evolution of the anode-electrolyte interphase in all-solid-state batteries with excellent cyclability[J]. Advanced Energy Materials, 2024: 2401299. DOI: 10.1002/aenm.202401299. |
65 | KARGER L, NUNES B N, YUSIM Y, et al. Protective nanosheet coatings for thiophosphate-based all-solid-state batteries[J]. Advanced Materials Interfaces, 2024, 11(14): 2301067. DOI: 10.1002/admi.202301067. |
66 | LEE S, KIM Y, PARK C, et al. Interplay of cathode–halide solid electrolyte in enhancing thermal stability of charged cathode material in all-solid-state batteries[J]. ACS Energy Letters, 2024, 9(4): 1369-1380. DOI: 10.1021/acsenergylett.4c00033. |
67 | HENNEQUART B, PLATONOVA M, CHOMETON R, et al. Atmospheric-pressure operation of all-solid-state batteries enabled by halide solid electrolyte[J]. ACS Energy Letters, 2024, 9(2): 454-460. DOI: 10.1021/acsenergylett.3c02513. |
68 | ZHAO B S, ZHOU C, CHEN P, et al. Synergistic interfacial optimization for high-sulfur-content all-solid-state lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4679-4688. DOI: 10.1021/acsami.3c16067. |
69 | ZHOU J B, CHANDRAPPA M L H, TAN S, et al. Healable and conductive sulfur iodide for solid-state Li-S batteries[J]. Nature, 2024, 627(8003): 301-305. DOI: 10.1038/s41586-024-07101-z. |
70 | GU J B, HU W X, WU Y Q, et al. Asymmetric sulfur redox paths in sulfide-based all-solid-state lithium-sulfur batteries[J]. Chemistry of Materials, 2024, 36(9): 4403-4416. DOI: 10.1021/acs.chemmater.3c03317. |
71 | XI L, LI Y, ZHANG D C, et al. The contact interface engineering of all-sulfide-based solid state batteries via infiltrating dissoluble sulfide electrolyte[J]. Energy & Environmental Materials, 2023, 6(6): e12461. DOI: 10.1002/eem2.12461. |
72 | LI W, ZHANG M H, SUN X Y, et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator[J]. Nature Communications, 2024, 15: 803. DOI: 10.1038/s41467-024-45087-4. |
73 | QI X Q, JIN X Y, XU H H, et al. Air-stable Li2S cathodes enabled by an in situ-formed Li+ conductor for graphite-Li2S pouch cells[J]. Advanced Materials, 2024, 36(14): 2310756. DOI: 10.1002/adma.202310756. |
74 | YANG Q, CAI J Y, LI G W, et al. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions[J]. Nature Communications, 2024, 15(1): 3231. DOI: 10.1038/s41467-024-47565-1. |
75 | ZHANG Y F, WANG W Q, JIA Z C, et al. Dual-stage polyporate framework with redox mediator for high loading lithium sulfur batteries[J]. Energy Storage Materials, 2024, 67: 103320. DOI: 10.1016/j.ensm.2024.103320. |
76 | CAO F L, ZHANG X K, JIN Z H, et al. Electronegativity matching of asymmetrically coordinated single-atom catalysts for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(19): 2303893. DOI: 10.1002/aenm.202303893. |
77 | DING Y F, SUN Z T, WU J H, et al. Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries[J]. Journal of Energy Chemistry, 2023, 87: 462-472. DOI: 10.1016/j.jechem.2023.08.032. |
78 | JIA P F, WANG J, ZHENG T L, et al. Boosting cathode activity and anode stability of lithium-sulfur batteries with vigorous iodic species triggered by nitrate[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401055. DOI: 10.1002/anie.202401055. |
79 | CHEN J, GENG X, WANG C Y, et al. An interweaving 3D ion-conductive network binder for high-loading and lean-electrolyte lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2024, 12(18): 11038-11048. DOI: 10.1039/D4TA00451E. |
80 | CHOI H N, KIM H, KIM M J, et al. Constructing the interconnected charge transfer pathways in sulfur composite cathode for all-solid-state lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(8): 11076-11083. DOI: 10.1021/acsami.3c18675. |
81 | WANG H M, YUAN H, WANG W W, et al. Accelerating sulfur redox kinetics by electronic modulation and drifting effects of pre-lithiation electrocatalysts[J]. Advanced Materials, 2024, 36(8): 2307741. DOI: 10.1002/adma.202307741. |
82 | FU J Z, GONG X T, JIN W T, et al. Enable superior performance of ultra-high loading electrodes through the cost-efficient solvent-free electrode manufacturing technology[J]. Energy Storage Materials, 2024, 69: 103423. DOI: 10.1016/j.ensm.2024.103423. |
83 | KIM J, PARK K, KIM M, et al. 10 mAh Cm-2 Cathode by Roll-to-Roll Process for Low Cost and High Energy Density Li-Ion Batteries[J]. Advanced Energy Materials, 2024, 14(10): 2303455. DOI: 10.1002/aenm.202303455. |
84 | UZUN K, SHARMA B, FRIEBERG B R, et al. Investigating the structure and performance of electrodes made by dry and wet slurry processes[J]. Journal of the Electrochemical Society, 2024, 171(2): 020516. DOI: 10.1149/1945-7111/ad242d. |
85 | BINDUMADHAVAN K, SURENDRAN V, SURIYAKUMAR S, et al. Dual-functional trisiloxane as binder additive for high volume expansion Li-ion battery electrodes[J]. Journal of Energy Storage, 2024, 77: 109931. DOI: 10.1016/j.est.2023.109931. |
86 | YANG C, LIU X X, ZHU J D, et al. A unique redox active ion-electron conductor enabled 5C fast-charging graphite anode for lithium-ion batteries[J]. Journal of Energy Storage, 2024, 76: 109889. DOI: 10.1016/j.est.2023.109889. |
87 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
88 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024: 2402024. DOI: 10.1002/adma.202402024. |
89 | LIN X, SHEN Y, YU Y, et al. In situ NMR verification for stacking pressure-induced lithium deposition and dead lithium in anode-free lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(14): 2303918. DOI: 10.1002/aenm.202303918. |
90 | ZHANG Q M, WANG Y Z, DENG Q, et al. In situ and real-time monitoring the chemical and thermal evolution of Lithium-ion batteries with single-crystalline Ni-rich layered oxide cathode[J]. Angewandte Chemie International Edition, 2024, 63(18): e202401716. DOI: 10.1002/anie.202401716. |
91 | SIM R, SU L S, DOLOCAN A, et al. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry[J]. Advanced Materials, 2024, 36(14): 2311573. DOI: 10.1002/adma.202311573. |
92 | DAHN J R. Investigation of the failure mechanisms of Li-ion pouch cells with Si/graphite composite negative electrodes and single wall carbon nanotube conducting additive[J]. Journal of the Electrochemical Society, 2024, 171(3): 030532. DOI: 10.1149/1945-7111/ad3398. |
93 | CLAUSNITZER M, IHRIG M, CRESSA L, et al. Impact of degradation mechanisms at the cathode/electrolyte interface of garnet-based all-solid-state batteries[J]. Energy Storage Materials, 2024, 67: 103262. DOI: 10.1016/j.ensm.2024.103262. |
94 | ZHANG N, REN G X, LI L L, et al. Dynamical evolution of CO2 and H2O on garnet electrolyte elucidated by ambient pressure X-ray spectroscopies[J]. Nature Communications, 2024, 15: 2777. DOI: 10.1038/s41467-024-47071-4. |
95 | WANG Y C, JI Y C, YIN Z W, et al. Tuning rate-limiting factors for graphite anodes in fast-charging Li-ion batteries[J]. Advanced Functional Materials, 2024: 2401515. DOI: 10.1002/adfm.202401515. |
96 | LIU R L, WEI Z Y, PENG L L, et al. Establishing reaction networks in the 16-electron sulfur reduction reaction[J]. Nature, 2024, 626(7997): 98-104. DOI: 10.1038/s41586-023-06918-4. |
97 | WEBER A, KEIM N, GYULAI A, et al. The role of surface free energy in binder distribution and adhesion strength of aqueously processed LiNi0.5Mn1.5O4 cathodes[J]. Journal of the Electrochemical Society, 2024, 171(4): 040523. DOI: 10.1149/1945-7111/ad3a24. |
98 | MIAO Z Y, XIAO X P, LI J B, et al. Evaluating the effect of binder for sulfurized polyacrylonitrile cathode via optical fiber sensors[J]. Advanced Functional Materials, 2024, 34(5): 2301736. DOI: 10.1002/adfm.202301736. |
99 | CHENG H R, MA Z, KUMAR P, et al. High voltage electrolyte design mediated by advanced solvation chemistry toward high energy density and fast charging lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(18): 2304321. DOI: 10.1002/aenm.202304321. |
100 | REYNOLDS C, FARAJI NIRI M, HIDALGO M F, et al. Impact of formulation and slurry properties on lithium-ion electrode manufacturing[J]. Batteries & Supercaps, 2024, 7(2): e202300396. DOI: 10.1002/batt.202300396. |
[1] | Hong ZHOU, Zhulin XIN, Hao FU, Qiang ZHANG, Feng WEI. Analysis of the key materials employed in solid-state lithium batteries based on patent data mining [J]. Energy Storage Science and Technology, 2024, 13(7): 2386-2398. |
[2] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[3] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[4] | Zongxun LI, Qiuqiu LYU, Haoyu ZHAO, Jianyu HE, Yang LIU, Zaihong SUN, Kaihua SUN, Tenglong ZHU. Research of GDC barrier layer applications by hydrothermal insitu growth in industrial-sized SOFC [J]. Energy Storage Science and Technology, 2024, 13(7): 2407-2413. |
[5] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[6] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[7] | Shijie LIAO, Ying WEI, Yunhui HUANG, Renzong HU, Henghui XU. 1,3-Difluorobenzene diluent-stabilizing electrode interface for high-performance low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2124-2130. |
[8] | Xiang LI, Dezhong LIU, Kai YUAN, Dapeng CHEN. Solid-state electrolyte for low-temperature lithium metal batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2327-2347. |
[9] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[10] | Wentao WANG, Yifan WEI, Kun HUANG, Guowei LV, Siyao ZHANG, Xinya TANG, Zeyan CHEN, Qingyuan LIN, Zhipeng MU, Kunhua WANG, Hua CAI, Jun CHEN. Testing standards and developmental advances for low-temperature Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2300-2307. |
[11] | Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360. |
[12] | Zheng LI, Zhenzhong YANG, Qiong WANG, Renzong HU. Patent intelligence analysis of the research progress in low-temperature electrolytes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2317-2326. |
[13] | Guangyu CHENG, Xinwei LIU, Shuo LIU, Haitao GU, Ke WANG. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. |
[14] | Fei ZHAO, Yinghua CHEN, Zheng MA, Qian LI, Jun MING. Advances in low-temperature electrolytes for potassium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2308-2316. |
[15] | Lifeng WANG, Naiqing REN, Hai YANG, Yu YAO, Yan YU. Advances in low-temperature electrolytes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2206-2223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||