Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 544-554.doi: 10.19799/j.cnki.2095-4239.2024.0926
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yonggang CHANG1(), Jinhao ZHANG1, Wei XIE1, Xiuchun LI1,2, Yilin WANG3,4, Chengmeng CHEN3(
)
Received:
2024-09-29
Revised:
2024-10-26
Online:
2025-02-28
Published:
2025-03-18
Contact:
Chengmeng CHEN
E-mail:changyongg@chinacoal.com;ccm@sxicc.ac.cn
CLC Number:
Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review[J]. Energy Storage Science and Technology, 2025, 14(2): 544-554.
1 | HE X X, LAI W H, LIANG Y R, et al. Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon[J]. Advanced Materials, 2023, 35(40): e2302613. DOI:10.1002/adma.202302613. |
2 | LIU M Q, WU F, GONG Y T, et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries[J]. Advanced Materials, 2023, 35(29): e2300002. DOI:10.1002/adma.202300002. |
3 | SONG M X, YI Z L, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. DOI:10.1016/j.ensm. 2022.07.005. |
4 | NIITANI K, USHIRODA S, KUWATA H, et al. Hard carbon anode with a sodium carborane electrolyte for fast-charging all-solid-state sodium-ion batteries[J]. ACS Energy Letters, 2022, 7(1): 145-149. DOI:10.1021/acsenergylett.1c02307. |
5 | SONG M X, XIE L J, CHENG J Y, et al. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 66: 448-458. DOI:10.1016/j.jechem.2021.08.050. |
6 | LI Q, ZHANG J, ZHONG L X, et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes[J]. Advanced Energy Materials, 2022, 12(37): 2201734. DOI:10.1002/aenm.202201734. |
7 | KAMIYAMA A, KUBOTA K, IGARASHI D, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie (International Ed), 2021, 60(10): 5114-5120. DOI:10.1002/anie.202013951. |
8 | DONG R Q, WU F, BAI Y, et al. Sodium storage mechanism and optimization strategies for hard carbon anode of sodium ion batteries[J]. Acta Chimica Sinica, 2021, 79(12): 1461. DOI:10.6023/a21060284. |
9 | CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, 35(31): e2212186. DOI:10.1002/adma.202212186. |
10 | HUANG G, ZHANG H, GAO F, et al. Overview of hard carbon anode for sodium-ion batteries: Influencing factors and strategies to extend slope and plateau regions[J]. Carbon, 2024, 228: 119354. DOI:10.1016/j.carbon.2024.119354. |
11 | WANG Y L, YI Z L, XIE L J, et al. Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries[J]. Advanced Materials, 2024, 36(26): e2401249. DOI:10.1002/adma.202401249. |
12 | XIE F, XU Z, GUO Z Y, et al. Hard carbons for sodium-ion batteries and beyond[J]. Progress in Energy, 2020, 2(4): 042002. DOI:10.1088/2516-1083/aba5f5. |
13 | STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. DOI:10.1149/1.1393348. |
14 | STEVENS D A, DAHN J R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of the Electrochemical Society, 2000, 147(12): 4428. DOI:10.1149/1.1394081. |
15 | STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. DOI:10.1149/1.1379565. |
16 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. DOI:10.1002/adfm.201100854. |
17 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. DOI:10.1002/aenm.201700403. |
18 | HOU Z D, LEI D, JIANG M W, et al. Biomass-derived hard carbon with interlayer spacing optimization toward ultrastable Na-ion storage[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1367-1375. DOI:10.1021/acsami.2c19362. |
19 | ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6(1): 1501588. DOI:10. 1002/aenm.201501588. |
20 | BAI P X, HE Y W, ZOU X X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. DOI:10.1002/aenm.201703217. |
21 | JIAN Z L, BOMMIER C, LUO L L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320. DOI:10.1021/acs.chemmater.6b05474. |
22 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. DOI:10.1021/acs.nanolett.5b01969. |
23 | LI Z F, BOMMIER C, CHONG Z S, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Advanced Energy Materials, 2017, 7(18): 1602894. DOI:10.1002/aenm.201602894. |
24 | WANG Q Q, ZHU X S, LIU Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon, 2018, 127: 658-666. DOI:10.1016/j.carbon. 2017.11.054. |
25 | FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. DOI:10.1103/PhysRevB.61.14095. |
26 | FERRARI A C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57. DOI:10.1016/j.ssc.2007.03.052. |
27 | LUSSOW R O, VASTOLA F J, WALKER P L. Kinetics of oxygen interaction with graphon between 450 and 675 ℃[J]. Carbon, 1967, 5(6): 591-602. DOI:10.1016/0008-6223(67)90039-5. |
28 | TSAI P C, CHUNG S C, LIN S K, et al. Ab initio study of sodium intercalation into disordered carbon[J]. Journal of Materials Chemistry A, 2015, 3(18): 9763-9768. DOI:10.1039/C5TA01443C. |
29 | TERBAN M W, BILLINGE S J L. Structural analysis of molecular materials using the pair distribution function[J]. Chemical Reviews, 2022, 122(1): 1208-1272. DOI:10.1021/acs.chemrev. 1c00237. |
30 | CHEN X L, KONG W, WENG H M, et al. Analysis of positron annihilation in carbon allotropes[J]. Acta Physica Sinica, 2008, 57(5): 3271. DOI:10.7498/aps.57.3271. |
31 | CHEN X L, XI C Y, YE B J, et al. Analysis of positron annihilation lifetime in single-walled carbon nanotube bundles[J]. Acta Physica Sinica, 2007, 56(11): 6695. DOI:10.7498/aps.56.6695. |
32 | REZVANI S J, D'ELIA A, MACIS S, et al. Structural anisotropy in three dimensional macroporous graphene: A polarized XANES investigation[J]. Diamond and Related Materials, 2021, 111: 108171. DOI:10.1016/j.diamond.2020.108171. |
33 | HUANG Z P, LUO N C, ZHANG C F, et al. Radical generation and fate control for photocatalytic biomass conversion[J]. Nature Reviews Chemistry, 2022, 6(3): 197-214. DOI:10.1038/s41570-022-00359-9. |
34 | HE W J, YIN G J, ZHAO Y B, et al. Interactions between free radicals during co-pyrolysis of lignite and biomass[J]. Fuel, 2021, 302: 121098. DOI:10.1016/j.fuel.2021.121098. |
35 | BEDA A, VAULOT C, MATEI GHIMBEU C. Hard carbon porosity revealed by the adsorption of multiple gas probe molecules (N2, Ar, CO2, O2 and H2)[J]. Journal of Materials Chemistry A, 2021, 9(2): 937-943. DOI:10.1039/D0TA10088A. |
36 | MATEI GHIMBEU C, BEDA A, RÉTY B, et al. Review: Insights on hard carbon materials for sodium-ion batteries (SIBs): Synthesis-properties-performance relationships[J]. Advanced Energy Materials, 2024, 14(19): 2303833. DOI:10.1002/aenm. 202303833. |
37 | LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. DOI:10.1002/aenm.201902852. |
38 | SAUREL D, SEGALINI J, JAUREGUI M, et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage[J]. Energy Storage Materials, 2019, 21: 162-173. DOI:10.1016/j.ensm.2019.05.007. |
39 | JI W J, YI Z L, SONG M X, et al. Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity[J]. Journal of Energy Chemistry, 2024, 94: 551-559. DOI:10.1016/j.jechem.2024.02.048. |
40 | ZHANG X F, YI Z L, TIAN Y R, et al. Insight into the effect of structural differences among pitch fractions on sodium storage performance of pitch-derived hard carbons[J]. Carbon, 2024, 226: 119165. DOI:10.1016/j.carbon.2024.119165. |
41 | CHENG M G, XIE L J, YI Z L, et al. Preparation of enriched closed-pores hard carbon for high-performance sodium-ion batteries by the poly(vinyl butyral) template method[J]. ACS Applied Energy Materials, 2024, 7(8): 3452-3461. DOI:10.1021/acsaem.4c00331. |
42 | ZHONG S Y, LIU H Z, WEI D H, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries[J]. Chemical Engineering Journal, 2020, 395: 125054. DOI:10.1016/j.cej.2020.125054. |
43 | ZHANG Y, ZHANG Z H, TANG Y K, et al. Carbon block anodes with columnar nanopores constructed from amine-functionalized carbon nanosheets for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(46): 24393-24400. DOI:10.1039/D0TA08634G. |
44 | KIM D Y, LI O L, KANG J. Novel synthesis of highly phosphorus-doped carbon as an ultrahigh-rate anode for sodium ion batteries[J]. Carbon, 2020, 168: 448-457. DOI:10.1016/j.carbon.2020.07.021. |
45 | SUN D F, LIN S, YU D D, et al. Interlayer and doping engineering in partially graphitic hollow carbon nanospheres for fast sodium and potassium storage[J]. Chinese Chemical Letters, 2023, 34(2): 107339. DOI:10.1016/j.cclet.2022.03.062. |
46 | CHEN C, HUANG Y, MENG Z Y, et al. Experimental design and theoretical evaluation of nitrogen and phosphorus dual-doped hierarchical porous carbon for high-performance sodium-ion storage[J]. Journal of Materials Science & Technology, 2021, 76: 11-19. DOI:10.1016/j.jmst.2020.11.014. |
47 | YUAN Z Q, SI L L, ZHU X B. Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life[J]. Journal of Materials Chemistry A, 2015, 3(46): 23403-23411. DOI:10.1039/C5TA07223A. |
48 | CHENG H K, TANG Z R, LUO X Z, et al. Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery[J]. Science of the Total Environment, 2021, 777: 146120. DOI:10.1016/j.scitotenv.2021.146120. |
49 | LI Z F, CHEN Y C, JIAN Z L, et al. Defective hard carbon anode for Na-ion batteries[J]. Chemistry of Materials, 2018, 30(14): 4536-4542. DOI:10.1021/acs.chemmater.8b00645. |
50 | WANG T, LIU L L, WEI Y W, et al. Agar-derived slope-dominated carbon anode with puparium like nano-morphology for cost-effective SIBs[J]. Small, 2024, 20(20): e2309809. DOI:10.1002/smll.202309809. |
51 | TANG Z, ZHANG R, WANG H Y, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications, 2023, 14(1): 6024. DOI:10.1038/s41467-023-39637-5. |
52 | XU R, YI Z L, SONG M X, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. DOI:10.1016/j.carbon.2023.02.004. |
53 | ZHAO G X, XU T Q, ZHAO Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. DOI:10.1016/j.ensm.2024.103282. |
54 | XIONG Z Y, YUE L, ZHANG Y, et al. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage[J]. Journal of Colloid and Interface Science, 2024, 658: 610-616. DOI:10.1016/j.jcis.2023.12.096. |
55 | CAO B, LIU H, XU B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A, 2016, 4(17): 6472-6478. DOI:10.1039/C6TA00950F. |
56 | LU P, SUN Y, XIANG H F, et al. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): 1702434. DOI:10.1002/aenm.201702434. |
57 | DENG W T, CAO Y J, YUAN G M, et al. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47728-47739. DOI:10.1021/acsami.1c15884. |
58 | ZHAO J H, HE X X, LAI W H, et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13(18): 2300444. DOI:10.1002/aenm.202300444. |
59 | MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612. DOI:10.1021/acsenergylett.9b01900. |
60 | XU T Y, QIU X, ZHANG X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. DOI:10.1016/j.cej.2022.139514. |
61 | LI R R, HE X X, YANG Z, et al. Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(20): 7595-7605. DOI:10.1039/D1QM00911G. |
[1] | Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 555-569. |
[2] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[3] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[4] | Yuman ZHANG, Lingling FAN, Chongyang YANG. Effects of different anode materials on the cyclic performance of high-power LiFePO4 energy storage devices [J]. Energy Storage Science and Technology, 2024, 13(9): 3245-3253. |
[5] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[6] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[7] | Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150. |
[8] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[9] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[10] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[11] | Ruirui ZHAO, Yanqiu PENG, Xuejun LAI, Zhilong WU, Jie GAO, Wencheng XU, Lina WANG, Qin DING, Yongjin FANG, Yuliang CAO. Capacity fading mechanism of Na4Fe3(PO4)2P2O7 based sodium-ion battery during calendar aging [J]. Energy Storage Science and Technology, 2024, 13(11): 4124-4132. |
[12] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[13] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[14] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[15] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||