Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 555-569.doi: 10.19799/j.cnki.2095-4239.2024.0896
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yangfeng WANG1,2(), Jiaao HOU3, Zichen ZHU2, Cong SUO2, Shuandi HOU1,2(
)
Received:
2024-09-24
Revised:
2024-10-19
Online:
2025-02-28
Published:
2025-03-18
Contact:
Shuandi HOU
E-mail:wangyangfeng.fshy@sinopec.com;houshuandi.fshy@sinopec.com
CLC Number:
Yangfeng WANG, Jiaao HOU, Zichen ZHU, Cong SUO, Shuandi HOU. Research progress on hard-carbon closed-pore structure of sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 555-569.
1 | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. DOI:10. 1016/j.rser.2018.03.002. |
2 | LAHTINEN K, RAUTAMA D E, JIANG D H, et al. Reuse of LiCoO2 electrodes collected from spent Li-ion batteries after electrochemical re-lithiation of the electrode[J]. ChemSusChem, 2021, 14(11): 2434-2444. DOI:10.1002/cssc.202100629. |
3 | 谢金明, 庄容, 杜宇轩, 等. 硫掺杂炭材料在钠离子电池负极中的研究进展[J]. 新型炭材料(中英文), 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9. |
XIE J M, ZHUANG R, DU Y X, et al. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Materials, 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9. | |
4 | 胡英瑛, 吴相伟, 温兆银, 等. 储能钠电池技术发展的挑战与思考[J]. 中国工程科学, 2021, 23(5): 94-102. DOI: 10.15302/J-SSCAE-2021.05.013. |
HU Y Y, WU X W, WEN Z Y, et al. Challenges and thoughts on the development of sodium battery technology for energy storage[J]. Strategic Study of CAE, 2021, 23(5): 94-102. DOI: 10.15302/J-SSCAE-2021.05.013. | |
5 | 郭文林, 姚根有, 赵广, 等. 钠离子电池碳基负极材料研究进展[J]. 现代化工, 2023, 43(3): 67-71. DOI: 10.16606/j.cnki.issn0253-4320.2023.03.014. |
GUO W L, YAO G Y, ZHAO G, et al. Research progress on carbon-based anode materials for sodium ion batteries[J]. Modern Chemical Industry, 2023, 43(3): 67-71. DOI: 10.16606/j.cnki.issn0253-4320.2023.03.014. | |
6 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. DOI:10.1039/c6cs00776g. |
7 | CHEN X Y, TIAN J Y, LI P, et al. An overall understanding of sodium storage behaviors in hard carbons by an "adsorption-intercalation/filling" hybrid mechanism[J]. Advanced Energy Materials, 2022, 12(24): 2200886. DOI:10.1002/aenm.202200886. |
8 | CHEN X Y, LIU C Y, FANG Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. DOI:10.1002/cey2.196. |
9 | QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. DOI:10.1002/aenm.201700403. |
10 | 李雪, 张亚婷, 朱由余, 等. 孔结构对硬碳储钠性能影响研究进展[J]. 功能材料, 2024, 55(6): 6062-6068, 6087. |
LI X, ZHANG Y T, ZHU Y Y, et al. Research progress on the influence of pore structure on hard carbon sodium storage performance[J]. Journal of Functional Materials, 2024, 55(6): 6062-6068, 6087. | |
11 | ROUQUEROL J, AVNIR D, FAIRBRIDGE C W, et al. Recommendations for the characterization of porous solids (technical report)[J]. Pure and Applied Chemistry, 1994, 66(8): 1739-1758. DOI:10.1351/pac199466081739. |
12 | ZHENG T, REIMERS J N, DAHN J R. Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium[J]. Physical Review B, 1995, 51(2): 734-741. DOI:10.1103/physrevb.51.734. |
13 | 张俊, 李琦, 陶莹, 等. 钠离子电池筛分型碳: 缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. DOI: 10.19799/j.cnki.2095-4239.2022.0374. |
ZHANG J, LI Q, TAO Y, et al. Sieving carbons for sodium-ion batteries: Origin and progress[J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. DOI: 10.19799/j.cnki.2095-4239.2022.0374. | |
14 | 李瑀, 付浩宇, 封伟. 合成聚合物衍生硬碳在钠离子电池中的研究进展[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(1): 11-23. DOI: 10.11784/tdxbz202008024. |
LI Y, FU H Y, FENG W. Recent progress of synthetic polymer-derived hard carbon in sodium-ion batteries[J]. Journal of Tianjin University (Science and Technology), 2022, 55(1): 11-23. DOI: 10.11784/tdxbz202008024. | |
15 | 董瑞琪, 吴锋, 白莹, 等. 钠离子电池硬碳负极储钠机理及优化策略[J]. 化学学报, 2021, 79(12): 1461-1476. DOI: 10.6023/A21060284. |
DONG R Q, WU F, BAI Y, et al. Sodium storage mechanism and optimization strategies for hard carbon anode of sodium ion batteries[J]. Acta Chimica Sinica, 2021, 79(12): 1461-1476. DOI: 10.6023/A21060284. | |
16 | STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): A803. DOI:10.1149/1.1379565. |
17 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. DOI:10.1002/adfm.201100854. |
18 | CAO Y L, XIAO L F, SUSHKO M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. DOI:10.1021/nl3016957. |
19 | BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892. DOI:10.1021/acs.nanolett.5b01969. |
20 | ALVIN S, YOON D, CHANDRA C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81. DOI:10.1016/j.carbon.2018.12.112. |
21 | SUN N, GUAN Z, LIU Y W, et al. Extended "adsorption-insertion" model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials, 2019, 9(32): 1901351. DOI:10.1002/aenm.201901351. |
22 | LI Y M, HU Y S, TITIRICI M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659. DOI:10.1002/aenm.201600659. |
23 | BAI P X, HE Y W, ZOU X X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials, 2018, 8(15): 1703217. DOI:10.1002/aenm.201703217. |
24 | 冯鑫, 李莹, 刘明权, 等. 硬碳材料的功能化设计及其在钠离子电池负极中的应用[J]. 硅酸盐学报, 2022, 50(7): 1838-1851. DOI: 10.14062/j.issn.0454-5648.20211021. |
FENG X, LI Y, LIU M Q, et al. Functional design of hard carbon and its application in sodium-ion battery anode[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1838-1851. DOI: 10.14062/j.issn.0454-5648.20211021. | |
25 | SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): 1703268. DOI:10.1002/aenm.201703268. |
26 | STRATFORD J M, KLEPPE A K, KEEBLE D S, et al. Correlating local structure and sodium storage in hard carbon anodes: Insights from pair distribution function analysis and solid-state NMR[J]. Journal of the American Chemical Society, 2021, 143(35): 14274-14286. DOI:10.1021/jacs.1c06058. |
27 | JIN Y, SUN S X, OU M Y, et al. High-performance hard carbon anode: Tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials, 2018, 1(5): 2295-2305. DOI:10.1021/acsaem.8b00354. |
28 | AU H, ALPTEKIN H, JENSEN A C S, et al. Correction: A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2021, 14(5): 3216. DOI:10.1039/D1EE90018H. |
29 | YUN Y S, PARK K Y, LEE B, et al. Sodium-ion storage in pyroprotein-based carbon nanoplates[J]. Advanced Materials, 2015, 27(43): 6914-6921. DOI:10.1002/adma.201502303. |
30 | STRATFORD J M, ALLAN P K, PECHER O, et al. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes[J]. Chemical Communications, 2016, 52(84): 12430-12433. DOI:10.1039/c6cc06990h. |
31 | CHOI J, LEE M E, LEE S, et al. Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(2): 1185-1191. DOI:10.1021/acsaem.8b01734. |
32 | ZHANG H M, ZHAO S W, HUANG F Q. A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(48): 27140-27169. DOI:10.1039/D1TA07962J. |
33 | LI Q, LIU X S, TAO Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8): nwac084. DOI:10.1093/nsr/nwac084. |
34 | WANG Z H, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003854. DOI:10.1002/aenm.202003854. |
35 | 翟文凯. 硬碳微球负极材料的微观结构调控及储钠性能研究[D]. 北京: 北京化工大学, 2024. DOI: 10.26939/d.cnki.gbhgu.2024.000707. |
ZHAI W K. Study on microstructure control and sodium storage performance of hard carbon microsphere anode materials[D]. Beijing: Beijing University of Chemical Technology, 2024. DOI: 10.26939/d.cnki.gbhgu.2024.000707. | |
36 | 唐正. 硬碳负极材料结构与界面调控及储钠性能研究[D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.000674. |
TANG Z. Study on structure and interface regulation and sodium storage performance of hard carbon anode materials[D]. Changsha: Central South University, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.000674. | |
37 | SCHUTJAJEW K, GIUSTO P, HÄRK E, et al. Preparation of hard carbon/carbon nitride nanocomposites by chemical vapor deposition to reveal the impact of open and closed porosity on sodium storage[J]. Carbon, 2021, 185: 697-708. DOI:10.1016/j.carbon.2021.09.051. |
38 | ZHANG Y Q, ZHANG N, CHEN W L, et al. Effect of vapor carbon coating on the surface structure and sodium storage performance of hard carbon spheres[J]. Energy Technology, 2019, 7(11): 1900779. DOI:10.1002/ente.201900779. |
39 | LI Y Q, LU Y X, MENG Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials, 2019, 9(48): 1902852. DOI:10.1002/aenm.201902852. |
40 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337. DOI:10.1016/j.jpowsour.2017.12.054. |
41 | JING W F, WANG M, LI Y, et al. Pore structure engineering of wood-derived hard carbon enables their high-capacity and cycle-stable sodium storage properties[J]. Electrochimica Acta, 2021, 391: 139000. DOI:10.1016/j.electacta.2021.139000. |
42 | 黄源成. α纤维素基碳材料闭孔结构和粘结剂的优化及储钠性能研究[D]. 长沙: 中南大学, 2023. DOI: 10.27661/d.cnki.gzhnu. 2023.004570. |
HUANG Y C. Optimization of closed-cell structure and binder of α cellulose-based carbon materials and study on sodium storage performance[D]. Changsha: Central South University, 2023. DOI: 10.27661/d.cnki.gzhnu.2023.004570. | |
43 | YAMAMOTO H, MURATSUBAKI S, KUBOTA K, et al. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 16844-16848. DOI:10.1039/c8ta05203d. |
44 | SONG M X, YI Z L, XU R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. DOI:10.1016/j.ensm. 2022.07.005. |
45 | SHAO W L, CAO Q, LIU S Y, et al. Replacing "Alkyl" with "Aryl" for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode[J]. SusMat, 2022, 2(3): 319-334. DOI:10.1002/sus2.68. |
46 | ZHOU S Y, TANG Z, PAN Z Y, et al. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature[J]. SusMat, 2022, 2(3): 357-367. DOI:10.1002/sus2.60. |
47 | 周思宇. 木基生物质衍生硬碳的闭孔调控策略及储钠性能研究[D]. 长沙: 中南大学, 2022. DOI: 10.27661/d.cnki.gzhnu.2022.001806. |
ZHOU S Y. Study on closed-cell regulation strategy and sodium storage performance of hard carbon derived from wood-based biomass[D]. Changsha: Central South University, 2022. DOI: 10. 27661/d.cnki.gzhnu.2022.001806. | |
48 | TANG T J, ZHU W L, LAN P P, et al. Macro-micro structure engineering of bio-spore-derived hard carbon as an efficient anode in sodium ion batteries[J]. Chemical Engineering Journal, 2023, 475: 146212. DOI:10.1016/j.cej.2023.146212. |
49 | MA R, CHEN Y X, LI Q, et al. Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage[J]. Chemical Engineering Journal, 2024, 493: 152389. DOI:10.1016/j.cej.2024.152389. |
50 | 庄洪坤, 李文翠, 何斌, 等. 石油焦炭基储钠材料层间距扩大与闭孔研究[J]. 新型炭材料(中英文), 2024, 39(3): 549-560. DOI: 10.1016/S1872-5805(24)60858-9. |
ZHUANG H K, LI W C, HE B, et al. Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage[J]. New Carbon Materials, 2024, 39(3): 549-560. DOI: 10.1016/S1872-5805(24)60858-9. | |
51 | MENG Q W, CHEN B Y, JIAN W B, et al. Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin[J]. Journal of Power Sources, 2023, 581: 233475. DOI:10.1016/j.jpowsour.2023.233475. |
52 | 张高月, 王傲, 应浩, 等. 竹节硬碳的制备及储钠性能研究[J]. 生物质化学工程, 2023, 57(6): 1-7. DOI: 10.3969/j.issn.1673-5854.2023.06.001. |
ZHANG G Y, WANG A, YING H, et al. Preparation and sodium storage properties of bamboo hard carbon[J]. Biomass Chemical Engineering, 2023, 57(6): 1-7. DOI: 10.3969/j.issn.1673-5854. 2023.06.001. | |
53 | XIAO L F, LU H Y, FANG Y J, et al. Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode[J]. Advanced Energy Materials, 2018, 8(20): 1703238. DOI:10.1002/aenm.201703238. |
54 | ZHEN Y C, CHEN Y, LI F, et al. Ultrafast synthesis of hard carbon anodes for sodium-ion batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(42): e2111119118. DOI:10.1073/pnas.2111119118. |
55 | MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612. DOI:10.1021/acsenergylett.9b01900. |
56 | WANG K F, SUN F, WANG H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials, 2022, 32(34): 2203725. DOI:10.1002/adfm.202203725. |
57 | KAMIYAMA A, KUBOTA P K, IGARASHI D, et al. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie International Edition, 2021, 60(10): 5114-5120. DOI:10.1002/anie.202013951. |
58 | ZHENG Z, HU S J, YIN W J, et al. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage[J]. Advanced Energy Materials, 2024, 14(3): 2303064. DOI:10.1002/aenm.202303064. |
59 | IGARASHI D, TANAKA Y, KUBOTA K, et al. New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries[J]. Advanced Energy Materials, 2023, 13(47): 2302647. DOI:10.1002/aenm.202302647. |
60 | ZHANG X, CHEN W L, PENG J Y, et al. Pore structure modification of pitch-derived hard carbon for enhanced pore filling sodium storage[J]. Energy Technology, 2022, 10(11): 2200612. DOI:10.1002/ente. 202200612. |
61 | CHEN X Y, SAWUT N, CHEN K A, et al. Filling carbon: A microstructure-engineered hard carbon for efficient alkali metal ion storage[J]. Energy & Environmental Science, 2023, 16(9): 4041-4053. DOI:10.1039/D3EE01154B. |
62 | 魏亚强, 李国敏, 董艳辉. 三维激光扫描与气体置换联合测定岩石有效孔隙率[J]. 地质科技情报, 2015, 34(4): 212-216. |
WEI Y Q, LI G M, DONG Y H. Determinating effective porosity by the combination of three-dimensional laser scanning and gas displacement[J]. Geological Science and Technology Information, 2015, 34(4): 212-216. | |
63 | GLATTER O, KRATKY O. Small angle X-ray scattering[M]. New York: Academic Press, 1982. |
64 | 左婷婷, 宋西平. 小角X射线散射技术在材料研究中的应用[J]. 理化检验(物理分册), 2011, 47(12): 782-785, 789. |
ZUO T T, SONG X P. Applications of small angle X-ray scattering technique in the material study[J]. Physical Testing and Chemical Analysis (Part A (Physical Testing)), 2011, 47(12): 782-785, 789. | |
65 | 孟昭富. 小角X射线散射理论及应用[M]. 长春: 吉林科学技术出版社, 1996. |
MENG Z F. Theory and application of small angle X-ray scattering[M]. Changchun: Jilin Science & Technology Publishing House, 1996. | |
66 | DEBYE P, BUECHE A M. Scattering by an inhomogeneous solid[J]. 1949, 20(6): 518-525. DOI:10.1063/1.1698419. |
67 | 张丽娟. X射线小角散射系统构造及应用研究[J]. 电子测量与仪器学报, 2013, 27(4): 289-297. DOI: 10.3724/SP.J.1187.2013.00289. |
ZHANG L J. Construction and application study of X-ray small-angle scattering system[J]. Journal of Electronic Measurement and Instrumentation, 2013, 27(4): 289-297. DOI: 10.3724/SP.J.1187.2013.00289. | |
68 | 熊婵. 基于多维多模式超光谱系统的复杂混合溶液成分分析[D]. 天津: 天津大学, 2012. |
XIONG C. Composition analysis of complex mixed solution based on multi-dimensional multi-mode hyperspectral system[D]. Tianjin: Tianjin University, 2012. | |
69 | 李志宏, 赵军平, 吴东, 等. 小角X射线散射中Porod正偏离的校正[J]. 化学学报, 2000, 58(9): 1147-1150. DOI: 10.3321/j.issn: 0567-7351.2000.09.017. |
LI Z H, ZHAO J P, WU D, et al. A positive deviation from Porod's law in SAXS of porous ZrO2 xerogels[J]. Acta Chimica Sinica, 2000, 58(9): 1147-1150. DOI: 10.3321/j.issn: 0567-7351.2000. 09.017. | |
70 | RULAND W. Small-angle scattering of two-phase systems: Determination and significance of systematic deviations from Porod's law[J]. Journal of Applied Crystallography, 1971, 4(1): 70-73. DOI:10.1107/S0021889871006265. |
71 | HASHIMOTO T, FUJIMURA M, KAWAI H. Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions. 5. molecular-weight dependence of spherical microdomains[J]. Macromolecules, 1980, 13(6): 1660-1669. DOI:10.1021/ma60078a055. |
72 | MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science, 1967, 156(3775): 636-638. DOI:10.1126/science.156.3775.636. |
73 | 胡德生. 焦炭微晶结构特性研究[J]. 钢铁, 2006, 41(11): 10-12, 41. DOI: 10.3321/j.issn: 0449-749X.2006.11.003. |
HU D S. Crystallite structure characteristics of coke[J]. Iron & Steel, 2006, 41(11): 10-12, 41. DOI: 10.3321/j.issn: 0449-749X. 2006.11.003. | |
74 | ZHANG Q X, FU P P, ZHANG H F, et al. Microstructure analysis of nylon 66 by WAXD and SAXS [J]. Chemical Research in Chinese Universities, 2002,18(3):358-63. |
75 | WAHID D M, PUTHUSSERI D D, GAWLI Y, et al. Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms[J]. ChemSusChem, 2018, 11(3): 506-526. DOI:10.1002/cssc.201701664. |
76 | 邵渊. 功能碳材料的微结构调控及其储钠性能研究[D]. 北京: 北京化工大学, 2023. DOI: 10.26939/d.cnki.gbhgu.2023.000106. |
SHAO Y. Study on microstructure regulation and sodium storage performance of functional carbon materials[D]. Beijing: Beijing University of Chemical Technology, 2023. DOI: 10.26939/d.cnki.gbhgu.2023.000106. | |
77 | SAUREL D, SEGALINI J, JAUREGUI M, et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage[J]. Energy Storage Materials, 2019, 21: 162-173. DOI:10.1016/j.ensm.2019.05.007. |
78 | 宋晓夏, 唐跃刚, 李伟, 等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报, 2014, 39(4): 719-724. DOI: 10.13225/j.cnki.jccs.2013.1932. |
SONG X X, TANG Y G, LI W, et al. Pore structure in tectonically deformed coals by small angle X-ray scattering[J]. Journal of China Coal Society, 2014, 39(4): 719-724. DOI: 10.13225/j.cnki.jccs.2013.1932. | |
79 | 刘通. 煤纳米孔隙及其吸附解吸演化规律的小角X射线散射研究[D]. 北京: 中国矿业大学(北京), 2021. DOI: 10.27624/d.cnki.gzkbu.2021.000030. |
LIU T. Small angle X-ray scattering study on coal nano-pores and their adsorption-desorption evolution law[D]. Beijing: China University of Mining & Technology, Beijing, 2021. DOI: 10.27624/d.cnki.gzkbu.2021.000030. | |
80 | LYU T Y, LAN X X, LIANG L Z, et al. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage[J]. Electrochimica Acta, 2021, 365: 137356. DOI:10.1016/j.electacta.2020.137356. |
81 | 黎璟泓, 张一波, 贾怡然, 等. 高比能快充型钠离子电池炭负极: 进展与挑战[J]. 新型炭材料(中英文), 2024, 39(5): 729-742. |
LI J H, ZHANG Y B, JIA Y R, et al. Progress and challenges in the use of carbon anodes for high-energy and fast-charging sodium-ion batteries[J]. New Carbon Materials, 2024, 39(5): 729-742. | |
82 | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9: 134-142. DOI:10.1038/s41560-023-01414-5. |
83 | KAMIYAMA A, KUBOTA K, NAKANO T, et al. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(1): 135-140. DOI:10.1021/acsaem.9b01972. |
84 | WU F, DONG R Q, BAI Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(25): 21335-21342. DOI:10.1021/acsami.8b05618. |
85 | LIU H, JIA M Q, SUN N, et al. Nitrogen-rich mesoporous carbon as anode material for high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27124-27130. DOI:10.1021/acsami.5b06898. |
[1] | Yonggang CHANG, Jinhao ZHANG, Wei XIE, Xiuchun LI, Yilin WANG, Chengmeng CHEN. Capacity enhancement strategy of hard carbon anode for sodium-ion battery: A review [J]. Energy Storage Science and Technology, 2025, 14(2): 544-554. |
[2] | Lishuai ZHANG, Yifei ZHANG, Yiyang MA, Sibo ZHAO, Hongquan LIU, Shengting SHI, Yanjun ZHONG. Research progress on sodium-ion battery cathode materials based on iron-based prussian blue analogues [J]. Energy Storage Science and Technology, 2025, 14(2): 525-543. |
[3] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[4] | Yuman ZHANG, Lingling FAN, Chongyang YANG. Effects of different anode materials on the cyclic performance of high-power LiFePO4 energy storage devices [J]. Energy Storage Science and Technology, 2024, 13(9): 3245-3253. |
[5] | Dingbang HAO, Yongli LI. Na0.85Ni0.3Fe0.2Mn0.5O1.95F0.05@CuO cathode materials for high-rate and long cycling stability sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2489-2498. |
[6] | Yuan YAO, Ruoqi ZONG, Jianli GAI. Research progress of antimony- and bismuth-based metallic anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. |
[7] | Xiongwen XU, Ying MO, Wang ZHOU, Huandong YAO, Juan HONG, Hua LEI, Jian TU, Jilei LIU. Effect of hard carbon kinetic properties on low-temperature performance of Na-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2141-2150. |
[8] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[9] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[10] | Chengfan JIANG, Jun HUANG, Haibo XIE. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. |
[11] | Ruirui ZHAO, Yanqiu PENG, Xuejun LAI, Zhilong WU, Jie GAO, Wencheng XU, Lina WANG, Qin DING, Yongjin FANG, Yuliang CAO. Capacity fading mechanism of Na4Fe3(PO4)2P2O7 based sodium-ion battery during calendar aging [J]. Energy Storage Science and Technology, 2024, 13(11): 4124-4132. |
[12] | Haoran CAI, Lijue YAN, Xu YANG, Huilin PAN. Structural evolution and sodium-storage performance of O3/P2-Na x Ni1/3Co1/3Mn1/3O2 multiphasic cathode materials [J]. Energy Storage Science and Technology, 2023, 12(9): 2707-2714. |
[13] | Yuwen ZHAO, Huan YANG, Junpeng GUO, Yi ZHANG, Qi SUN, Zhijia ZHANG. Application of magnetic metal elements in sodium ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1332-1347. |
[14] | Kejun CHEN, Lijun FAN. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances [J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. |
[15] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||