Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 570-582.doi: 10.19799/j.cnki.2095-4239.2024.0774
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qin WANG1(), Yangang ZHANG1, Junfei LIANG1(
), Hua WANG2(
)
Received:
2024-08-20
Revised:
2024-09-02
Online:
2025-02-28
Published:
2025-03-18
Contact:
Junfei LIANG, Hua WANG
E-mail:S202216028@st.nuc.edu.cn;junfeiliang@buaa.edu.cn;wanghua8651@buaa.edu.cn
CLC Number:
Qin WANG, Yangang ZHANG, Junfei LIANG, Hua WANG. Challenges and strategies for interface failures in silicon-based solid-state batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 570-582.
Fig.2
Schematic of (a) crystalline Si and (b) amorphous Si; (c) Expansion of different crystal facets of Si during alloying process[10]; (d) Schematic diagram of critical diameter of crystalline silicon[11]; (e) SEM image of critical diameter of amorphous silicon[12]; (f) Electrochemical sintering of Si particles"
Fig.3
(a) Irreversible volume expansion of Si; (b) Electronic conductivity, (c) impedance[19], and (d) ionic diffusion coefficientof Li x Si at different x values; (e) Potential curves of Si electrode with and without SE; Young's modulus change curves of Si thin film electrode[20]; (f) during lithiation (g) during delithiation at different x values[21]"
Table 1
Performance statistics of silicon-based solid-state batteries employing different strategies"
电解质 | 温度/℃ | 堆叠 压力/MPa | 正极/负极(NP比) | 倍率(C) | 保留率(%)/ 循环圈数 | 策略 |
---|---|---|---|---|---|---|
Li6PS5Cl | — | 20 | NCM/μ-Si(1.3) | 0.19/0.09 mA/cm2(充/放) | 83/50 | 电极设计[ |
Li6PS5Cl | 室温 | 50 | NCM/μ-Si(1.1) | 1 | 80/500 | 电极设计[ |
Li6PS5Cl | 室温 | 50 | NCM/Si | 1/3 | 71.5/650 | 涂层材料[ |
Li2.4Zr0.6Lu0.4Cl6 | 室温 | 30 | NCM/Si(1.4) | 0.5 | 80/1500 | 电解质设计[ |
Li6PS5Cl | 55 | — | NCM/LSH46 | 1 | 80/1033 | 电极设计[ |
Li6PS5Cl | 55 | — | LCO/LSH46 | 20 | 72.1/30000 | 电极设计[ |
Li6PS5Cl | 55 | — | LCO/LSH46 | 30 | 82.69/15000 | 电极设计[ |
Li6PS5Cl | 30 | 5 | NCM/Si | 0.2 | 77.8/100 | 循环压力优化[ |
Li6PS5Cl | 室温 | 75 | LCO/LiSi | 5 mA/cm2 | 73.81000 | 负极预锂化[ |
弹性电解质 | 室温 | 0 | LPF/μ-Si | — | 98.3/100 | 电解质设计[ |
Li6PS5Cl | 室温 | 50 | NCM@LBO/Si(1.3) | 0.1 | 58.1/100 | 涂层材料[ |
Fig.6
(a) Schematic of electrolyte and electrode particles with different particle sizes; (b) EDS-mapping of composite electrode with LPSCl electrolyte and electrode materials of varying particle sizes; (c) Effective ionic conductivity (below) and effective electronic conductivity (above) of composite materials with LPSCl electrolyte and electrode materials of different particle sizes; (d) Relationship between capacity and ratio of ionic to electronic conductivity; (e) Local current density simulation of composite electrodes with LPSCl of different particle sizes[43]"
Fig.7
(a) Schematic diagram of spring-loaded solid-state battery frame; (b) Internal pressure distribution within the battery; (c) Schematic diagram of fluid medium pressurized battery frame; (d) Internal pressure distribution within the battery; (e) Cycling capacity diagram of solid-state batteries under traditional pressurization (UPCH) and isostatic pressurization (IPCH)[30]; (f) Preparation schematic of elastic electrolyte; (g) Cycling curve of battery composed of elastic electrolyte and LPSCl electrolyte under no pressure conditions; (h) Pressure distribution and evolution within Si electrodes (Ⅰ) using LPSCl electrolyte and (Ⅱ) elastic electrolyte[31]"
1 | WANG K, ZHONG X B, SONG Y X, et al. Regeneration of photovoltaic industry silicon waste toward high-performance lithium-ion battery anode[J]. Rare Metals, 2024, 43(10): 4948-4960. DOI: 10.1007/s12598-024-02783-w. |
2 | GUO X D, GUO K X, CHEN S, et al. Effectively coupling of SnSe2 nanosheet with N, Se co-doped carbon nanofibers as self-standing anode for lithium-ion batteries[J]. Nanotechnology, 2024, 35(19): 195401. DOI: 10.1088/1361-6528/ad263c. |
3 | ASHUROV I, AKHUNOV K, ASHUROV K, et al. Utilization of silicon for lithium-ion battery anodes: Unveiling progress, hurdles, and prospects (review)[J]. Applied Solar Energy, 2024, 60(1): 90-126. DOI: 10.3103/S0003701X23601801. |
4 | KAN R Y, XU Y, CHEN R, et al. Thermal effects of solid-state batteries at different temperature: Recent advances and perspectives[J]. Energy Storage Materials, 2024, 68: 103366. DOI: 10.1016/j.ensm.2024.103366. |
5 | SCHMALTZ T, HARTMANN F, WICKE T, et al. A roadmap for solid-state batteries[J]. Advanced Energy Materials, 2023, 13(43): 2301886. DOI: 10.1002/aenm.202301886. |
6 | KALNAUS S, DUDNEY N J, WESTOVER A S, et al. Solid-state batteries: The critical role of mechanics[J]. Science, 2023, 381(6664): eabg5998. DOI: 10.1126/science.abg5998. |
7 | JANEK J, ZEIER W G. Challenges in speeding up solid-state battery development[J]. Nature Energy, 2023, 8: 230-240. DOI: 10.1038/s41560-023-01208-9. |
8 | CAO D X, SUN X, LI Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022, 34(24): e2200401. DOI: 10.1002/adma.202200401. |
9 | XU H F, YANG S B, LI B. Pressure effects and countermeasures in solid-state batteries: A comprehensive review[J]. Advanced Energy Materials, 2024, 14(16): 2303539. DOI: 10.1002/aenm. 202303539. |
10 | LEE S W, MCDOWELL M T, CHOI J W, et al. Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters, 2011, 11(7): 3034-3039. DOI: 10.1021/nl201787r. |
11 | LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. DOI: 10.1021/nn204476h. |
12 | MCDOWELL M T, LEE S W, HARRIS J T, et al. In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters, 2013, 13(2): 758-764. DOI: 10.1021/nl3044508. |
13 | ZHAO M, ZHANG J, COSTA C M, et al. Unveiling challenges and opportunities in silicon-based all-solid-state batteries: Thin-film bonding with mismatch strain[J]. Advanced Materials, 2024, 36(4): e2308590. DOI: 10.1002/adma.202308590. |
14 | FU F J, WANG X X, ZHANG L F, et al. Unraveling the atomic-scale mechanism of phase transformations and structural evolutions during (de)lithiation in Si anodes[J]. Advanced Functional Materials, 2023, 33(37): 2303936. DOI: 10.1002/adfm.202303936. |
15 | TAN D H S, CHEN Y T, YANG H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. DOI: 10.1126/science.abg7217. |
16 | GE M Z, CAO C Y, BIESOLD G M, et al. Recent advances in silicon-based electrodes: From fundamental research toward practical applications[J]. Advanced Materials, 2021, 33(16): e2004577. DOI: 10.1002/adma.202004577. |
17 | MAHAJANI V, KORATKAR N. Toward practical alloy anode based solid state batteries[J]. Small, 2023: 2306388. DOI: 10. 1002/smll.202306388. |
18 | WETJEN M, SOLCHENBACH S, PRITZL D, et al. Morphological changes of silicon nanoparticles and the influence of cutoff potentials in silicon-graphite electrodes[J]. Journal of the Electrochemical Society, 2018, 165(7): A1503-A1514. DOI: 10. 1149/2.1261807jes. |
19 | HAM S Y, SEBTI E, CRONK A, et al. Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries[J]. Nature Communications, 2024, 15(1): 2991. DOI: 10.1038/s41467-024-47352-y. |
20 | HUO H Y, JIANG M, BAI Y, et al. Chemo-mechanical failure mechanisms of the silicon anode in solid-state batteries[J]. Nature Materials, 2024, 23(4): 543-551. DOI: 10.1038/s41563-023-01792-x. |
21 | PUTRA R P, MATSUSHITA K, OHNISHI T, et al. Operando nanomechanical mapping of amorphous silicon thin film electrodes in all-solid-state lithium-ion battery configuration during electrochemical lithiation and delithiation[J]. The Journal of Physical Chemistry Letters, 2024, 15(2): 490-498. DOI: 10.1021/acs.jpclett.3c03012. |
22 | LU P S, ZHOU Z M, XIAO Z X, et al. Materials and chemistry design for low-temperature all-solid-state batteries[J]. Joule, 2024, 8(3): 635-657. DOI: 10.1016/j.joule.2024.01.027. |
23 | KHAN K, HANIF M B, XIN H, et al. PEO-based solid composite polymer electrolyte for high capacity retention all-solid-state lithium metal battery[J]. Small, 2024, 20(4): e2305772. DOI: 10. 1002/smll.202305772. |
24 | BOORBOOR AJDARI F, ASGHARI P, MOLAEI AGHDAM A, et al. Silicon solid state battery: The solid-state compatibility, particle size, and carbon compositing for high energy density[J]. Advanced Functional Materials, 2024, 34(30): 2314822. DOI: 10. 1002/adfm.202314822. |
25 | IWASA H, IKEMOTO S, OHASHI F, et al. X-ray diffraction investigation of lithium silicides under high pressure[J]. JJAP Conference Proceedings, 2020, 8: 011302. DOI: 10.56646/jjapcp. 8.0_011302. |
26 | ZENG Z D, LIU N, ZENG Q S, et al. Elastic moduli of polycrystalline Li15Si4 produced in lithium ion batteries[J]. Journal of Power Sources, 2013, 242: 732-735. DOI: 10.1016/j.jpowsour. 2013.05.121. |
27 | CANGAZ S, HIPPAUF F, REUTER F S, et al. Enabling high-energy solid-state batteries with stable anode interphase by the use of columnar silicon anodes[J]. Advanced Energy Materials, 2020, 10(34): 2001320. DOI: 10.1002/aenm.202001320. |
28 | ZHOU L D, ZUO T T, LI C, et al. Li3- xZrx(Ho/Lu)1- xCl6 solid electrolytes enable ultrahigh-loading solid-state batteries with a prelithiated Si anode[J]. ACS Energy Letters, 2023, 8(7): 3102-3111. DOI: 10.1021/acsenergylett.3c00763. |
29 | YAN W L, MU Z L, WANG Z X, et al. Hard-carbon-stabilized Li-Si anodes for high-performance all-solid-state Li-ion batteries[J]. Nature Energy, 2023, 8: 800-813. DOI: 10.1038/s41560-023-01279-8. |
30 | CHEN Y T, JANG J, OH J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304327. DOI: 10. 1002/aenm.202304327. |
31 | PAN H, WANG L, SHI Y, et al. A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure[J]. Nature Communications, 2024, 15(1): 2263. DOI: 10. 1038/s41467-024-46472-9. |
32 | OH J, CHOI S H, CHANG B, et al. Elastic binder for high-performance sulfide-based all-solid-state batteries[J]. ACS Energy Letters, 2022, 7(4): 1374-1382. DOI: 10.1021/acsenergylett.2c00461. |
33 | AN S Y, MA Y, PAYANDEH S, et al. Comparative analysis of aqueous and nonaqueous polymer binders for the silicon anode in all-solid-state batteries[J]. Advanced Energy and Sustainability Research, 2023, 4(11): 2300092. DOI: 10.1002/aesr.202300092. |
34 | LI Y X, WU Y J, MA T H, et al. Long-life sulfide all-solid-state battery enabled by substrate-modulated dry-process binder[J]. Advanced Energy Materials, 2022, 12(37): 2201732. DOI: 10. 1002/aenm.202201732. |
35 | MILLS A, KALNAUS S, TSAI W Y, et al. Elucidating polymer binder entanglement in freestanding sulfide solid-state electrolyte membranes[J]. ACS Energy Letters, 2024, 9(6): 2677-2684. DOI: 10.1021/acsenergylett.3c02813. |
36 | ZHANG Y, HULD F, LU S, et al. Revisiting polytetrafluorethylene binder for solvent-free lithium-ion battery anode fabrication[J]. Batteries, 2022, 8(6): 57. DOI: 10.3390/batteries8060057. |
37 | CAO D X, JI T T, SINGH A, et al. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide-based all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(14): 2203969. DOI: 10.1002/aenm. 202203969. |
38 | WANG Z L, SHEN X F, CHEN S J, et al. Large-scale fabrication of stable silicon anode in air for sulfide solid state batteries via ionic-electronic dual conductive binder[J]. Advanced Materials, 2024, 36(32): e2405025. DOI: 10.1002/adma.202405025. |
39 | AN W L, GAO B, MEI S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications, 2019, 10(1): 1447. DOI: 10. 1038/s41467-019-09510-5. |
40 | XU D X, ZHAO Y M, CHEN H X, et al. Reduced volume expansion of micron-sized SiOx via closed-nanopore structure constructed by Mg-induced elemental segregation[J]. Angewandte Chemie International Edition, 2024, 63(21): e202401973. DOI: 10.1002/anie.202401973. |
41 | JEONG M G, NAIK K G, ZHENG Y J, et al. operando investigation on the role of densification and chemo-mechanics on solid-state cathodes[J]. Advanced Energy Materials, 2024, 14(23): 2304544. DOI: 10.1002/aenm.202304544. |
42 | WANG Y X, HAO H C, NAIK K G, et al. Mechanical milling-induced microstructure changes in argyrodite LPSCl solid-state electrolyte critically affect electrochemical stability[J]. Advanced Energy Materials, 2024, 14(23): 2304530. DOI: 10.1002/aenm. 202304530. |
43 | SCHLAUTMANN E, WEISS A, MAUS O, et al. Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites[J]. Advanced Energy Materials, 2023, 13(41): 2302309. DOI: 10.1002/aenm.202302309. |
44 | BOTROS M, GONZALEZ-JULIAN J, SCHERER T, et al. Influence of grain size on the electrochemical performance of Li7-3 xLa3Zr2AlxO12 solid electrolyte[J]. Batteries & Supercaps, 2024, 7(11): e202300370. DOI: 10.1002/batt.202300370. |
45 | CHANG S L, WANG Q, WANG A N, et al. Highly efficient ion-transport "polymer-in-ceramic" electrolytes boost stable all-solid-state Li metal batteries[J]. Journal of Colloid and Interface Science, 2024, 671: 477-485. DOI: 10.1016/j.jcis.2024.05.131. |
46 | KIM H S, WATANABE K, MATSUI N, et al. Crack suppression by downsizing sulfide-electrolyte particles for high-current-density operation of metal/alloy anodes[J]. Batteries & Supercaps, 2023, 6(10): e202300306. DOI: 10.1002/batt.202300306. |
47 | GU L H, HAN J J, CHEN M F, et al. Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries[J]. Energy Storage Materials, 2022, 52: 547-561. DOI: 10.1016/j.ensm. 2022.08.028. |
48 | SU Y, ZHANG X D, DU C C, et al. An all-solid-state battery based on sulfide and PEO composite electrolyte[J]. Small, 2022, 18(29): e2202069. DOI: 10.1002/smll.202202069. |
49 | ZHANG L C, LIN Y K, PENG X D, et al. A high-capacity polyethylene oxide-based all-solid-state battery using a metal-organic framework hosted silicon anode[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24798-24805. DOI: 10.1021/acsami.2c04487. |
50 | HAN X, XU M, GU L H, et al. Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery[J]. Rare Metals, 2024, 43(3): 1017-1029. DOI: 10.1007/s12598-023-02498-4. |
51 | LIU L, WANG Q H, JIE Z H, et al. Stable interface between anode materials and Li1.3Al0.3Ti1.7(PO4)3-based solid-state electrolyte facilitated by graphene coating[J]. Electrochimica Acta, 2022, 431: 141136. DOI: 10.1016/j.electacta.2022.141136. |
52 | KIM J, KIM C, JANG I, et al. Si nanoparticles embedded in carbon nanofiber sheathed with Li6PS5Cl as an anode material for all-solid-state batteries[J]. Journal of Power Sources, 2021, 510: 230425. DOI: 10.1016/j.jpowsour.2021.230425. |
53 | SAKKA Y, YAMASHIGE H, WATANABE A, et al. Pressure dependence on the three-dimensional structure of a composite electrode in an all-solid-state battery[J]. Journal of Materials Chemistry A, 2022, 10(31): 16602-16609. DOI: 10.1039/D2TA02378D. |
54 | SO M, INOUE G, HIRATE R, et al. Effect of mold pressure on compaction and ion conductivity of all-solid-state batteries revealed by the discrete element method[J]. Journal of Power Sources, 2021, 508: 230344. DOI: 10.1016/j.jpowsour. 2021.230344. |
55 | YAMAMOTO M, TERAUCHI Y, SAKUDA A, et al. Effects of volume variations under different compressive pressures on the performance and microstructure of all-solid-state batteries[J]. Journal of Power Sources, 2020, 473: 228595. DOI: 10.1016/j.jpowsour.2020.228595. |
56 | HAM S Y, YANG H D, NUNEZ-CUACUAS O, et al. Assessing the critical current density of all-solid-state Li metal symmetric and full cells[J]. Energy Storage Materials, 2023, 55: 455-462. DOI:10.1016/j.ensm.2022.12.013. |
[1] | Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. The Monitoring Method of Irreversible Lithium Plating in Lithium Batteries Based on Transfer Learning [J]. Energy Storage Science and Technology, 2025, (): 1-10. |
[2] | Hong WANG, Kaiyue ZHANG. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 488-496. |
[3] | Yuchen JI, Luyi YANG, Hai LIN, Feng PAN. Applications of in-situ characterization techniques in studying battery interfacial evolution mechanisms [J]. Energy Storage Science and Technology, 2025, 14(2): 740-754. |
[4] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[5] | Zhenfei LIANG, Xingxing WANG, Haochen HU, Yanhong LI, Boxue OUYANG, Xiaoyun SUN, Ruimao GAO, Jun YE, Deren WANG. Advancements in electrolyte and membrane technologies for zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2025, 14(2): 583-600. |
[6] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[7] | Juan PANG, Jinling SUN. Discussion on the application and economic benefits of distributed energy storage systems on the basis of energy interconnection [J]. Energy Storage Science and Technology, 2025, 14(2): 868-870. |
[8] | Xuzhi WU, Jian GUO. An approach for remaining useful life prediction of power battery with improved grey wolf optimized GPR model [J]. Energy Storage Science and Technology, 2025, 14(2): 728-736. |
[9] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
[10] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[11] | Xueru LI, Zhejie MA, Ping LI. Research progress on microstructure characterization of cathode catalyst layer in proton exchange membrane fuel cells [J]. Energy Storage Science and Technology, 2025, 14(2): 812-821. |
[12] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2024 to Jan. 31, 2025) [J]. Energy Storage Science and Technology, 2025, (): 1-21. |
[13] | Ruilin He, Tong Zhang, Jiachun Wu, Chaoyang Wang, Yonghong Deng, Guangzhao Zhang, Xiaoxiong Xu. The design of scaffold materials and their application in lithium batteries [J]. Energy Storage Science and Technology, 2025, (): 1-18. |
[14] | Hong ZHOU, Hailong YU, Liping WANG, Xuejie HUANG. Frontier monitoring and topic analysis of lithium batteries based on BERTopic model [J]. Energy Storage Science and Technology, 2025, 14(1): 406-416. |
[15] | Junfeng HAO, Guanjun CEN, Ronghan QIAO, Jing ZHU, Qiangfu SUN, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2024 to Nov. 30, 2024) [J]. Energy Storage Science and Technology, 2025, 14(1): 388-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||