Energy Storage Science and Technology
Wei WANG1(), Huishi LIANG2(
), Miangang LI2, Kui ZHOU2, Wei WANG2, Ziyao WANG2, Zinan SHI2
Received:
2025-01-14
Revised:
2025-02-17
Online:
2025-03-05
Contact:
Huishi LIANG
E-mail:wang-w22@mails.tsinghua.edu.cn;lianghuishi@tsinghua-eiri.org
CLC Number:
Wei WANG, Huishi LIANG, Miangang LI, Kui ZHOU, Wei WANG, Ziyao WANG, Zinan SHI. The Monitoring Method of Irreversible Lithium Plating in Lithium Batteries Based on Transfer Learning[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0049.
Table 3
Experimental results"
电池编号 | 温度 | 充电倍率 | 放电倍率 | 循环老化圈数 | 容量保持率 | 常温容量保持率 |
---|---|---|---|---|---|---|
1 | 25℃ | 2C | 1C | 1000 | 72.99% | 94.10% |
2 | 25℃ | 2C | 1C | 1000 | 85.92% | 97.29% |
3 | 25℃ | 2C | 1C | 1000 | 85.12% | 96.92% |
4 | 35℃ | 2C | 1C | 1000 | 82.52% | 94.28% |
5 | 35℃ | 2C | 1C | 1000 | 83.82% | 94.75% |
6 | 35℃ | 2C | 1C | 1000 | 83.34% | 92.31% |
7 | -11℃ | 0.2C | 0.1C | 83 | 53.41% | 73.12% |
8 | -11℃ | 0.2C | 0.1C | 178 | 33.22% | 65.83% |
9 | -11℃ | 0.2C | 0.1C | 182 | 38.75% | 72.52% |
10 | -16℃ | 0.1C | 0.05C | 67 | 54.38% | 63.98% |
11 | -16℃ | 0.1C | 0.05C | 76 | 60.65% | 88.64% |
12 | -16℃ | 0.1C | 0.05C | 68 | 59.46% | 84.10% |
1 | 樊亚平,晏莉琴,简德超,等.锂离子电池失效中析锂现象的原位检测方法综述[J].储能科学与技术,2019,8(06):1040-1049. |
FAN Yaping, YAN Liqin, JIAN Dechao, et al. In situ detection of lithium dendrite in the failure of lithium-ion batteries[J]. Energy Storage Science and Technology,2019,8(06):1040-1049. | |
2 | LIN Xianke, KHOSRAVINIA Kavian, HU Xiaosong, et al. Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries[J]. Progress in Energy and Combustion Science,2021,87:100953. |
3 | STEIGER J, KRAMER D, MOENIG R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. |
4 | CHENG J, ASSEGIE A, HUANG C, et al. Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy[J]. Journal of Physical Chemistry C, 2017, 121(14): 7761-7766. |
5 | BOMMIER C, CHANG W, LU Y, et al. In Operando Acoustic Detection of Lithium Metal Plating in Commercial LiCoO2/Graphite Pouch Cells[J]. Cell Reports Physical Science, 2020, 1(4): 100035. |
6 | JUNG M J, BAKTIYAR A, LEE Y N, et al. Experimental Analysis for Fast Lithium Plating Detection in Voltage Relaxation Profile of Lithium-Ion Batteries[C]. IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, 2023:1-6. |
7 | VENNAM G, TANIM T R, TODD J T, et al. Advancing Li-plating detection: Motivating a multi-signal correlation approach [J]. Journal of Energy Storage, 2024, 98: 112869. |
8 | CHEN Y, TORRES-CASTRO L, CHEN K H, et al. Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis[J]. Journal of Power Sources, 2022, 539: 231601. |
9 | BURNS J, STEVENS D, DAHN J. In-Situ Detection of Lithium Plating Using High Precision Coulometry[J]. Journal of the Electrochemical Society, 2015, 162(6): A959-A964. |
10 | RANGARAJAN S, BARSUKOV Y, MUKHERJEE P. In operando signature and quantification of lithium plating[J]. Journal of Materials Chemistry A, 2019, 7(36): 20683-20695. |
11 | 董鹏, 张剑波, 王震坡. 基于电化学阻抗谱的锂离子电池析锂检测方法[J]. 汽车安全与节能学报, 2021, 12(04): 570-579. |
DONG Peng, ZHANG Jianbo, WANG Zhenpo. Lithium plating identification based on electrochemical impedance spectra of lithium ion batteries[J]. Journal of Automotive Safety and Energy, 2021, 12(04): 570-579. | |
12 | SUN J, LYU K, WANG R, et al. A multistage constant current charging optimization control strategy based on lithium plating fast detection[J]. Journal of Energy Storage, 2025, 109: 115189. |
13 | CHEN B R, KUNZ M R, TANIM T R, et al. A machine learning framework for early detection of lithium plating combining multiple physics-based electrochemical signatures[J]. Cell Reports Physical Science, 2021, 2(3): 100352. |
14 | CHEN B R, WALKER C M, KIM S, et al. Battery aging mode identification across NMC compositions and designs using machine learning[J]. Joule, 2022, 6(12): 2776-2793. |
15 | TIAN Y, LIN C, LI H, et al. Deep neural network-driven in-situ detection and quantification of lithium plating on anodes in commercial lithium-ion batteries[J]. Ecomat, 2023, 5(1): e11280. |
16 | WANG Han, SONG Yajie, SUN Xue, et al. Onboard in-situ warning and detection of Li plating for fast-charging batteries with deep learning[J]. Energy Storage Materials, 2024, 71: 103585. |
17 | DOYLE M, FULLER T, NEWMAN J. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533. |
18 | 李超. 基于电化学-热耦合模型的析锂特性研究[D]. 江苏大学, 2022. |
LI Chao. Study on lithium plating characteristics based on electrochemical-thermal coupling model[D]. Jiangsu University, 2022. | |
19 | KEIL Jonas, JOSSEN Andreas. Electrochemical Modeling of Linear and Nonlinear Aging of Lithium-Ion Cells[J]. Journal of the Electrochemical Society,2020,167:110535. |
20 | 李义函,卢世刚,王晶,等.磷酸铁锂锂离子电池低温不可逆析锂及其对电池性能衰减的影响[J].储能科学与技术,2024,13(10):3656-3665. |
LI Yihan, LU Shigang, WANG Jing, et al. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries[J]. Energy Storage Science and Technology,2024,13(10):3656-3665. | |
21 | GANIN Yaroslav, LEMPITSKY Victor. Unsupervised Domain Adaptation by Backpropagation[C]. Proceedings of Machine Learning Research,2015,37: 1180-1189. |
22 | HE Zhihai, YANG Bo, CHEN Chaoxian, et al. CLDA an adversarial unsupervised domain adaptation method with classifier-level adaptation[J]. Multimedia Tools and Applications,2020,79(45-46):33973–33991. |
[1] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. |
[2] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[3] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. |
[4] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. |
[5] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. |
[6] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. |
[7] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. |
[8] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[9] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. |
[10] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[11] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[12] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[13] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[14] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[15] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||