Energy Storage Science and Technology
Yuchen JI, Luyi YANG, Hai LIN(), Feng PAN()
Received:
2024-08-07
Revised:
2024-08-12
Contact:
Hai LIN, Feng PAN
E-mail:linhai@pkusz.edu.cn;panfeng@pkusz.edu.cn
CLC Number:
Yuchen JI, Luyi YANG, Hai LIN, Feng PAN. Applications of In-Situ Characterization Techniques in Studying Battery Interfacial Evolution Mechanisms[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0743.
Figure 6
(a) In-situ three-dimensional laser confocal microscopy measurement of sodium dendrite growth; (b-e) Morphological evolution observed by in-situ AFM during SEI formation on the sodium metal anode (b), mass increase and dissolution behavior measured by EQCM (c), composition evolution detected by in-situ Raman spectroscopy (d), and gas generation measured by DEMS (e); (f) Schematic illustration of SEI formation and failure mechanism on the sodium metal anode."
Figure 12
(a) EQCM measurement of mass changes during the discharge process of a Li-S battery; (b) UV-visible spectroscopy showing the adsorption behavior of the binder on lithium polysulfides; (c) Schematic diagram illustrating the binder's mechanism in suppressing the dissolution of lithium polysulfides[48]"
1 | LU J, CHEN Z, PAN F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochem. Energy Rev., 2018, 1(1): 35-53. |
2 | CHEN S, ZHENG G, YAO X, et al. Constructing Matching Cathode–Anode Interphases with Improved Chemo-mechanical Stability for High-Energy Batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. |
3 | LIU T, YU L, LIU J, et al. Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries[J]. Nat. Energy, 2021, 6(3): 277-286. |
4 | JI Y, QIU J, ZHAO W, et al. In situ probing the origin of interfacial instability of Na metal anode[J]. Chem, 2023, 9(10): 2943-2955. |
5 | LI J, JI Y, SONG H, et al. Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries[J]. Nano-Micro Letters, 2022, 14(1): 191. |
6 | XUE S, CHEN S, FU Y, et al. Revealing the Role of Active Fillers in Li-ion Conduction of Composite Solid Electrolytes[J]. Small, 2023: e2305326. |
7 | YANG K, YANG L, WANG Z, et al. Constructing a Highly Efficient Aligned Conductive Network to Facilitate Depolarized High‐Areal‐Capacity Electrodes in Li‐Ion Batteries[J]. Adv. Energy Mater., 2021, 11(22): 2100601. |
8 | HUANG W, LI J, ZHAO Q, et al. Mechanochemically Robust LiCoO2 with Ultrahigh Capacity and Prolonged Cyclability[J]. Adv. Mater., 2024: 2405519. |
9 | YAO X, CHEN S, WANG C, et al. Interface Welding via Thermal Pulse Sintering to Enable 4.6 V Solid‐State Batteries[J]. Adv. Energy Mater., 2023: 2303422. |
10 | HUANG Y, JI Y, ZHENG G, et al. Tailored Interphases Construction for Enhanced Si Anode and Ni-Rich Cathode Performance in Lithium-Ion Batteries[J]. CCS Chem., 2024: https://doi.org/10.31635/ccschem.024.202404120. |
11 | WANG Z, TAN R, WANG H, et al. A Metal–Organic‐Framework‐Based Electrolyte with Nanowetted Interfaces for High‐Energy‐Density Solid‐State Lithium Battery[J]. Adv. Mater., 2017, 30(2): 1704436. |
12 | JI Y, YIN Z-W, YANG Z, et al. From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance[J]. Chem. Soc. Rev., 2021, 50(19): 10743-10763. |
13 | QIAN G, LI Y, CHEN H, et al. Revealing the aging process of solid electrolyte interphase on SiOx anode[J]. Nat. Commun., 2023, 14(1): 6048. |
14 | LIU T, LIN L, BI X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2019, 14(1): 50-56. |
15 | JIA L-L, JI Y-C, YANG K, et al. Interface Reconstruction Study by Functional Scanning Probe Microscope in Li-ion Battery Research[J]. Chinese J. Struct. Chem., 2020, 39(2): 200─205. |
16 | CHEN Y-J, ZHANG M-J, YUAN S, et al. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy[J]. Nano Energy, 2017, 36: 303-312. |
17 | LIU P, YANG L, XIAO B, et al. Revealing Lithium Battery Gas Generation for Safer Practical Applications[J]. Adv. Funct. Mater., 2022, 32(47): 2208586. |
18 | LI S, ZHANG W, WU Q, et al. Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(35): 14935-14941. |
19 | LIU M, YAO L, JI Y, et al. Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries[J]. Nano Letters, 2023, 23(2): 541-549. |
20 | BRUCKENSTEIN S, RAOGADDE R. Use of a porous electrode for in-situ mass spectrometric determination of volatile electrode reaction products[J]. J. Am. Chem. Soc., 1971, 93(3): 793-794. |
21 | ZHANG B, WANG L, WANG X, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Mater., 2022, 53: 492-504. |
22 | WANG Y H, ZHENG S, YANG W M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water[J]. Nature, 2021, 600(7887): 81-85. |
23 | GU Y, TANG S, YI J, et al. Nanostructure-based plasmon-enhanced raman spectroscopic strategies for characterization of the solid–electrolyte interphase: Opportunities and challenges[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13466-13477. |
24 | ZHANG Y, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy Environ. Sci., 2020, 13(1): 183-199. |
25 | HU J, JI Y, ZHENG G, et al. Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): e153. |
26 | XIANG J, YANG L, YUAN L, et al. Alkali-Metal Anodes: From Lab to Market[J]. Joule, 2019, 3(10): 2334-2363. |
27 | CAO X, XU Y, ZOU L, et al. Stability of solid electrolyte interphases and calendar life of lithium metal batteries[J]. Energy Environ. Sci., 2023, 16(4): 1548-1559. |
28 | FENG G, JIA H, SHI Y, et al. Imaging solid–electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
29 | WANG Y C, JI Y C, YIN Z W, et al. Tuning Rate-Limiting Factors for Graphite Anodes in Fast-Charging Li-Ion Batteries[J]. Adv. Funct. Mater., 2024: 2401515. |
30 | TU S, ZHANG B, ZHANG Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid–electrolyte interphase[J]. Nat. Energy, 2023, 8(12): 1365-1374. |
31 | BAO C, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Adv. Funct. Mater., 2020, 30(52): 2004891. |
32 | WU H, JIA H, WANG C, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Adv. Energy Mater., 2020, 11(5): 2003092. |
33 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. |
34 | ZHANG J-G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chem. Rev., 2020, 120(24): 13312-13348. |
35 | WANG Z, SUN Z, LI J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chem. Soc. Rev., 2021, 50(5): 3178-3210. |
36 | LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties[J]. ACS Appl Mater Interfaces, 2014, 6(22): 20317-23. |
37 | TAN S, SHADIKE Z, LI J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nat. Energy, 2022, 7(6): 484-494. |
38 | WAN H, XU J, WANG C. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nature Reviews Chemistry, 2023. |
39 | CHEN Y, YU Q, XU G, et al. In Situ Observation of the Insulator-To-Metal Transition and Nonequilibrium Phase Transition for Li(1-x)CoO(2) Films with Preferred (003) Orientation Nanorods[J]. ACS Appl Mater Interfaces, 2019, 11(36): 33043-33053. |
40 | GUO C, ZHANG F, HAN X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery[J]. Adv. Mater., 2023, 35(33): e2302325. |
41 | XING Y, YANG Y, LI D, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Adv. Mater., 2018, 30(51): e1803124. |
42 | WANG M, YANG K, JI Y, et al. Developing highly reversible Li–CO2 batteries: from on-chip exploration to practical application[J]. Energy Environ. Sci., 2023, 16(9): 3960-3967. |
43 | MA L, YU T, TZOGANAKIS E, et al. Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li–O2 Batteries: Recent Progress and Perspective[J]. Adv. Energy Mater., 2018, 8(22): 1800348. |
44 | YANG K, LI Y, JIA L, et al. Atomic/nano-scale in-situ probing the shuttling effect of redox mediator in Na–O2 batteries[J]. Journal of Energy Chemistry, 2021, 56: 438-443. |
45 | LU B, CHEN B, WANG D, et al. Engineering the interfacial orientation of MoS2/Co9S8 bidirectional catalysts with highly exposed active sites for reversible Li-CO2 batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(6): e2216933120. |
46 | HUANG W, QIU J, JI Y, et al. Exploiting Cation Intercalating Chemistry to Catalyze Conversion-Type Reactions in Batteries[J]. ACS Nano, 2023, 17(6): 5570-5578. |
47 | SHAO Q, ZHU S, CHEN J. A review on lithium-sulfur batteries: Challenge, development, and perspective[J]. Nano Research, 2023, 16(6): 8097-8138. |
48 | CHEN S, SONG Z, JI Y, et al. Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries via a Multifunctional Conductive Binder[J]. Small Methods, 2021, 5(10): 2100839. |
49 | HUANG J, BOLES S T, TARASCON J-M. Sensing as the key to battery lifetime and sustainability[J]. Nat. Sustain., 2022, 5(3): 194-204. |
50 | HAN G, YAN J, GUO Z, et al. A review on various optical fibre sensing methods for batteries[J]. Renewable Sustainable Energy Rev., 2021, 150. |
51 | DAY R P, XIA J, PETIBON R, et al. Differential Thermal Analysis of Li-Ion Cells as an Effective Probe of Liquid Electrolyte Evolution during Aging[J]. Journal of The Electrochemical Society, 2015, 162(14): A2577-A2581. |
52 | ZHANG W, WENG M, ZHANG M, et al. Revealing Morphology Evolution of Lithium Dendrites by Large‐Scale Simulation Based on Machine Learning Force Field[J]. Adv. Energy Mater., 2022, 13(4): 2202892. |
[1] | Shuyuan CHEN, Chen CHENG, Xiao XIA, Huanxin JU, Liang ZHANG. Research progress in the X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 113-129. |
[2] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[3] | Jian TU, Xiongwen XU, Haibo HU, Yang NIE, Tao ZENG, Qiushi SUN, Hao CHENG, Jian XIE, Xinbing ZHAO. Fabrication of gel-type Li-ion batteries and their electrochemical and safety properties [J]. Energy Storage Science and Technology, 2021, 10(3): 1025-1031. |
[4] | Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics [J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. |
[5] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[6] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||