Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 755-769.doi: 10.19799/j.cnki.2095-4239.2024.0880
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
					
													Jianru ZHANG1( ), Qiyu WANG1(
), Qiyu WANG1( ), Yinghui JI1, Xin GAO2, Xiqian YU1, Hong LI1
), Yinghui JI1, Xin GAO2, Xiqian YU1, Hong LI1
												  
						
						
						
					
				
Received:2024-09-19
															
							
																	Revised:2024-10-26
															
							
															
							
																	Online:2025-02-28
															
							
																	Published:2025-03-18
															
						Contact:
								Qiyu WANG   
																	E-mail:momsnow@foxmail.com;qywang10@iphy.ac.cn
																					CLC Number:
Jianru ZHANG, Qiyu WANG, Yinghui JI, Xin GAO, Xiqian YU, Hong LI. Application of Auger electron spectroscopy in the analysis of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 755-769.
 
													
													Table 1
Common surface spectroscopy characterization techniques and their characteristic parameters"
| 表面谱学表征技术 | EDS (SEM) | XPS | AES | (TOF) SIMS | 
|---|---|---|---|---|
| 全称 | Energy dispersive x-ray spectroscopy | X-ray photoelectron spectroscopy | Auger electron spectroscopy | (Time of flight)Secondary ion mass spectroscopy | 
| 中文名称 | 能量色散X射线光谱仪 | X射线光电子能谱 | 俄歇电子能谱 | (飞行时间)二次离子质谱 | 
| 入射源 | 电子 | X射线 | 电子 | 离子(一般为Bi源) | 
| 检测信号 | X射线 | 电子 | 电子 | 离子(二次离子) | 
| 最小分析区域(直径) | 约1 μm | >10 μm | 约20 nm | 约70 nm | 
| 检测深度(最小) | 约1 μm | 约6 nm | ≤5 nm | <1 nm | 
| 深度剖析 | 需匹配FIB | √(Ar 溅射) | √(Ar 溅射) | √(Ar,O,Cs,GCIB等多种溅射) | 
| 二维成像 | √ | × | √ | √ | 
| 三维成像 | × | × | × | √ | 
| 最低检测限 | 约0.5% | 约0.05% | 约0.1% | 约0.0001% | 
| 检测元素 | B~U | Li~U | Li~U | H~U | 
| 样品类型 | 导体(可喷金) | 导体、绝缘体 | 导体 | 固体 | 
| 定量分析 | 一般 | 优 | 半定量 | 半定量 | 
 
													
													Fig. 4
AES analysis of Li2MnO3 crystals after SO2 adsorption: (a) scanned SEM image of the surface of the Li2MnO3 crystal, the analysis area is indicated by a red plus sign; (b) the corresponding Auger spectra; (c) the peak energy of O in different cathode materials as a function of voltage, and the values obtained from the reference spectrum[25, 27]"
 
														 
													
													Fig. 9
(a) Schematic diagram of the preparation of cross-sectional in-situ thin film all-solid-state lithium battery by ion beam cutting technology; (b) SEM image (cross-section) of polished longitudinal sample: (b1) first charge and (b2) first discharge; Oblique (60°) SEM images and SAM superimpositions of Li KVV, Co LMM, and Pt MNN transitions, charging c) and discharging d), respectively; (c) Comparison of the Co and Li peak fits for the first discharge and the first discharge [refer to Figure (b)] for the three feature points: (c1) point 1, (c2) point 2, (c3) point 3. O/Co and O/Li ratios were quantified using absolute intensity (fitting reference Co, CoO, Co3O4 and Li2O standard spectra)[37]"
 
														| 1 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)——全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. | 
| ZHANG S, WANG S F, LING S G, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. DOI: 10.3969/j.issn.2095-4239.2014.04.012. | |
| 2 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB202007070. | 
| WANG H, AN H W, SHAN H M, et al. Research progress on interfaces of all-solid-state batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 48-61. DOI: 10.3866/PKU.WHXB 202007070. | |
| 3 | HUANG Y, CHEN B, DUAN J, et al. Graphitic carbon nitride (g-C3 N4): An interface enabler for solid-state lithium metal batteries[J]. Angewandte Chemie (International Ed), 2020, 59(9): 3699-3704. DOI:10.1002/anie.201914417. | 
| 4 | ZHANG D C, ZHANG L, YANG K, et al. Superior blends solid polymer electrolyte with integrated hierarchical architectures for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36886-36896. DOI:10.1021/acsami.7b12186. | 
| 5 | LIN M X, BEN L B, SUN Y, et al. Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle[J]. Chemistry of Materials, 2015, 27(1): 292-303. DOI:10.1021/cm503972a. | 
| 6 | FAN X M, HU G R, ZHANG B, et al. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries[J]. Nano Energy, 2020, 70: 104450. DOI:10.1016/j.nanoen.2020.104450. | 
| 7 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. DOI:10.1016/j.nanoen. 2022.107222. | 
| 8 | 赵磊. 表面分析技术在半导体材料中的应用[J]. 电子技术与软件工程, 2019(16): 115-116. | 
| ZHAO L. Application of surface analysis technology in semiconductor materials[J]. Electronic Technology & Software Engineering, 2019(16): 115-116. | |
| 9 | 郭汉生. 消除俄歇电子能谱实验中氧化物表面荷电的新方法[J]. 材料研究学报, 2000, 14(B01): 53-57. | 
| GUO H S. A new method for compensation of the charging of oxides during aes[J]. Chinese Journal of Materials Research, 2000, 14(B01): 53-57. | |
| 10 | SEAH M P, DENCH W A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids[J]. Surface and Interface Analysis, 1979, 1(1): 2-11. DOI:10.1002/sia.740010103. | 
| 11 | 张录平, 李晖, 刘亚平. 俄歇电子能谱仪在材料分析中的应用[J]. 分析仪器, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. | 
| ZHANG L P, LI H, LIU Y P. Applications of Auger electron spectrometer in material analysis[J]. Analytical Instrumentation, 2009(4): 14-17. DOI: 10.3969/j.issn.1001-232X.2009.04.003. | |
| 12 | 刘江禄. 俄歇电子能谱及其在半导体中的应用[J]. 微电子学, 1980, 10(6): 39-50. | 
| LIU J L. Auger electron spectroscopy and its application in semiconductors[J]. Microelectronics, 1980, 10(6): 39-50. | |
| 13 | 王钤, 张强基, 华中一. 俄歇定量分析中确定背散射因子的一种新方法[J]. 物理学报, 1986, 35(7): 914-921. | 
| WANG Q, ZHANG Q J, HUA Z Y. A new method to determine backscattering factors for quantitative auger analysis[J]. Acta Physica Sinica, 1986, 35(7): 914-921. | |
| 14 | MORGEN P, HENRIKSEN B, KYRPING D. Ion etching methods for depth profiling of complex three-dimensional samples in combination with scanning Auger electron microscopy[J]. Vacuum, 2008, 82(9): 922-929. DOI:10.1016/j.vacuum. 2007.12.009. | 
| 15 | 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版), 2016, 31(2): 3-24. | 
| KANG H L, JIAN W, HAN Y S, et al. Progress on the quantification of sputter depth profiling and its application[J]. Journal of Shantou University (Natural Science Edition), 2016, 31(2): 3-24. | |
| 16 | 吴正龙, 姚振钰, 刘志凯, 等. 图形衬底上硅区双离子束选择淀积Co研究[J]. 半导体学报, 1999, 20(11): 1010-1014. | 
| WU Z L, YAO Z Y, LIU Z K, et al. Selective deposition of cobalt on patterned substrate by dual ion beams techniques[J]. Chinese Journal of Semiconductors, 1999, 20(11): 1010-1014. | |
| 17 | 俄歇电子能谱分析[J]. 金属热处理, 2023, 48(10): 101. | 
| Auger electron spectroscopy[J]. Heat Treatment of Metals, 2023, 48(10): 101. | |
| 18 | JOHANSEN M, XU J, TAM P L, et al. Lithiated carbon fibres for structural batteries characterised with Auger electron spectroscopy[J]. Applied Surface Science, 2023, 627: 157323. DOI:10.1016/j.apsusc.2023.157323. | 
| 19 | BRIGGS D, RIVIERE J C. Parctical surface analysis by Auger and X-ray photoelectron spectroscopy[M]. Chichester, New York: Wiley, 1983. | 
| 20 | 徐富春. 微纳尺度表征的俄歇电子能谱新技术[D]. 厦门: 厦门大学, 2009. | 
| XU F C. New technology of auger electron spectroscopy characterized by micro-nano scale[D]. Xiamen: Xiamen University, 2009. | |
| 21 | SHIRLEY D A. High-resolution X-ray photoemission spectrum of the valence bands of gold[J]. Physical Review B, 1972, 5(12): 4709-4714. DOI:10.1103/PhysRevB.5.4709. | 
| 22 | 龚海宁, 申华, 黄惠忠, 等. XPS中Tougaard法本底扣除初探[J]. 物理化学学报, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB 20020408. | 
| GONG H N, SHEN H, HUANG H Z, et al. Preliminary exploration of touggard's method used for the background subtraction in XPS[J]. Acta Physico-chimica Sinica, 2002, 18(4): 326-331. DOI: 10.3866/PKU.WHXB20020408. | |
| 23 | JANSSON C, TOUGAARD S, BEAMSON B D, et al. Surface and interface analysis[J]. 1995, 23: 484. | 
| 24 | ZHU Y F, CAO L L. Auger chemical shift analysis and its applications to the identification of interface species in thin films[J]. Applied Surface Science, 1998, 133(3): 213-220. DOI:10.1016/S0169-4332(98)00206-2. | 
| 25 | QUESNE-TURIN A, FLAHAUT D, CROGUENNEC L, et al. Surface reactivity of Li2MnO3: First-principles and experimental study[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 44222-44230. DOI:10.1021/acsami.7b14826. | 
| 26 | TANG C Y, MA Y H, HAASCH R T, et al. Insights into solid-electrolyte interphase induced Li-ion degradation from in situ auger electron spectroscopy[J]. The Journal of Physical Chemistry Letters, 2017, 8(24): 6226-6230. DOI:10.1021/acs.jpclett.7b02847. | 
| 27 | TANG C Y, FENG L, HAASCH R T, et al. Surface redox on Li [Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy[J]. Electrochimica Acta, 2018, 277: 197-204. DOI:10.1016/j.electacta. 2018.04.199. | 
| 28 | ISHIDA N, FUKUMITSU H, KIMURA H, et al. Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy[J]. Journal of Power Sources, 2014, 248: 1118-1122. DOI:10.1016/j.jpowsour. 2013.09.121. | 
| 29 | HOFFMANN M, ZIER M, OSWALD S, et al. Challenges for lithium species identification in complementary Auger and X-ray photoelectron spectroscopy[J]. Journal of Power Sources, 2015, 288: 434-440. DOI:10.1016/j.jpowsour.2015.04.144. | 
| 30 | ISHIDA N, FUJITA D. Chemical-state imaging of Li using scanning Auger electron microscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 186: 39-43. DOI:10.1016/j.elspec.2013.03.001. | 
| 31 | WINKLER V, HANEMANN T, BRUNS M. Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition[J]. Surface and Interface Analysis, 2017, 49(5): 361-369. DOI:10.1002/sia.6139. | 
| 32 | JUNG E Y, PARK C S, LEE J C, et al. Experimental study on solid electrolyte interphase of graphite electrode in Li-ion battery by surface analysis technique[J]. Molecular Crystals and Liquid Crystals, 2018, 663(1): 158-167. DOI:10.1080/15421406.2018.1470709. | 
| 33 | HA Y, MARTIN T R, FRISCO S, et al. Evaluating the effect of electrolyte additive functionalities on NMC622/Si cell performance[J]. Journal of the Electrochemical Society, 2022, 169(7): 070515. DOI:10.1149/1945-7111/ac7e75. | 
| 34 | DAVIS A L, GARCIA-MENDEZ R, WOOD K N, et al. Electro-chemo-mechanical evolution of sulfide solid electrolyte/Li metal interfaces: operando analysis and ALD interlayer effects[J]. Journal of Materials Chemistry A, 2020, 8(13): 6291-6302. DOI:10.1039/C9TA11508K. | 
| 35 | TANG C Y, HAASCH R T, DILLON S J. In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling[J]. Chemical Communications, 2016, 52(90): 13257-13260. DOI:10.1039/c6cc08176b. | 
| 36 | TANG C Y, LEUNG K, HAASCH R T, et al. LiMn2O4 surface chemistry evolution during cycling revealed by in situ auger electron spectroscopy and X-ray photoelectron spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(39): 33968-33978. DOI:10.1021/acsami.7b10442. | 
| 37 | UHART A, LEDEUIL J B, PECQUENARD B, et al. Nanoscale chemical characterization of solid-state microbattery stacks by means of auger spectroscopy and ion-milling cross section preparation[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33238-33249. DOI:10.1021/acsami.7b07270. | 
| [1] | Jiabo LI, Zhixuan WANG, Di TIAN, Zhonglin SUN. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition [J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. | 
| [2] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. | 
| [3] | Jianxuan LI, Chen LIN, Zhongkai ZHOU. State of health estimation based on subtraction average based optimizer and bidirectional long and short term memory networks for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 358-369. | 
| [4] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. | 
| [5] | Ning HE, Fangfang YANG. Early prediction of battery lifetime based on energy and temperature features [J]. Energy Storage Science and Technology, 2024, 13(9): 3016-3029. | 
| [6] | Zhifeng HE, Yuanzhe TAO, Yonggang HU, Qicong Wang, Yong YANG. Machine learning-enhanced electrochemical impedance spectroscopy for lithium-ion battery research [J]. Energy Storage Science and Technology, 2024, 13(9): 2933-2951. | 
| [7] | Changhao LI, Shuping WANG, Xiankun YANG, Ziqi ZENG, Xinyue ZHOU, Jia XIE. Nonaqueous electrolyte in low-temperature lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(7): 2286-2299. | 
| [8] | Yang LU, Shuaishuai YAN, Xiao MA, Zhi LIU, Weili ZHANG, Kai LIU. Low-temperature electrolytes and their application in lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2224-2242. | 
| [9] | Meilong WANG, Yurui XUE, Wenxi HU, Keyu DU, Ruitao SUN, Bin ZHANG, Ya YOU. Design and research of all-ether high-entropy electrolyte for low-temperature lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2131-2140. | 
| [10] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. | 
| [11] | Pengfei XIAO, Lin MEI, Libao CHEN. Multicomponent-coated graphite composite anodes for low-temperature electrochemical energy storage [J]. Energy Storage Science and Technology, 2024, 13(7): 2116-2123. | 
| [12] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. | 
| [13] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. | 
| [14] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. | 
| [15] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
