Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 740-754.doi: 10.19799/j.cnki.2095-4239.2024.0743
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yuchen JI(), Luyi YANG, Hai LIN(
), Feng PAN(
)
Received:
2024-08-07
Revised:
2024-08-20
Online:
2025-02-28
Published:
2025-03-18
Contact:
Hai LIN, Feng PAN
E-mail:yuchenji@pku.edu.cn;linhai@pkusz.edu.cn;panfeng@pkusz.edu.cn
CLC Number:
Yuchen JI, Luyi YANG, Hai LIN, Feng PAN. Applications of in-situ characterization techniques in studying battery interfacial evolution mechanisms[J]. Energy Storage Science and Technology, 2025, 14(2): 740-754.
Fig. 7
(a) In-situ three-dimensional laser confocal microscopy measurement of sodium dendrite growth; (b) Morphological evolution observed by in-situ AFM during SEI formation on the sodium metal anode; (c) Mass increase and dissolution behavior measured by EQCM; (d) Composition evolution detected by in-situ Raman spectroscopy; (e) Gas generation measured by DEMS; (f) Schematic illustration of SEI formation and failure mechanism on the sodium metal anode"
Fig. 12
(a) EQCM measurement of mass changes during the discharge process of a Li-S battery; (b) UV-visible spectroscopy showing the adsorption behavior of the binder on lithium polysulfides; (c) Schematic diagram illustrating the binder's mechanism in suppressing the dissolution of lithium polysulfides[48]"
1 | LU J, CHEN Z W, PAN F, et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochemical Energy Reviews, 2018, 1(1): 35-53. DOI:10.1007/s41918-018-0001-4. |
2 | CHEN S M, ZHENG G R, YAO X M, et al. Constructing matching cathode-anode interphases with improved chemo-mechanical stability for high-energy batteries[J]. ACS Nano, 2024, 18(8): 6600-6611. DOI:10.1021/acsnano.3c12823. |
3 | LIU T C, YU L, LIU J J, et al. Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries[J]. Nature Energy, 2021, 6: 277-286. DOI:10.1038/s41560-021-00776-y. |
4 | JI Y C, QIU J M, ZHAO W G, et al. In situ probing the origin of interfacial instability of Na metal anode[J]. Chem, 2023, 9(10): 2943-2955. DOI:10.1016/j.chempr.2023.06.002. |
5 | LI J W, JI Y C, SONG H R, et al. Insights into the interfacial degradation of high-voltage all-solid-state lithium batteries[J]. Nano-Micro Letters, 2022, 14(1): 191. DOI:10.1007/s40820-022-00936-z. |
6 | XUE S D, CHEN S M, FU Y D, et al. Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes[J]. Small, 2023, 19(46): 2305326. DOI:10.1002/smll.202305326. |
7 | YANG K, YANG L Y, WANG Z J, et al. Constructing a highly efficient aligned conductive network to facilitate depolarized high-areal-capacity electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(22): 2100601. DOI:10.1002/aenm.202100601. |
8 | HUANG W Y, LI J Y, ZHAO Q H, et al. Mechanochemically robust LiCoO2 with ultrahigh capacity and prolonged cyclability[J]. Advanced Materials, 2024, 36(32): 2405519. DOI:10.1002/adma.202405519. |
9 | YAO X M, CHEN S M, WANG C H, et al. Interface welding via thermal pulse sintering to enable 4.6 V solid-state batteries[J]. Advanced Energy Materials, 2024, 14(10): 2303422. DOI:10.1002/aenm.202303422. |
10 | HUANG Y X, JI Y C, ZHENG G R, et al. Tailored interphases construction for enhanced Si anode and Ni-rich cathode performance in lithium-ion batteries[J]. CCS Chemistry, 2025, 7(2): 429-439. DOI:10.31635/ccschem.024.202404120. |
11 | WANG Z Q, TAN R, WANG H B, et al. A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery[J]. Advanced Materials, 2018, 30(2): 1704436. DOI:10.1002/adma.201704436. |
12 | JI Y C, YIN Z W, YANG Z Z, et al. From bulk to interface: Electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance[J]. Chemical Society Reviews, 2021, 50(19): 10743-10763. DOI:10.1039/d1cs00629k. |
13 | QIAN G Y, LI Y W, CHEN H B, et al. Revealing the aging process of solid electrolyte interphase on SiOx anode[J]. Nature Communications, 2023, 14(1): 6048. DOI:10.1038/s41467-023-41867-6. |
14 | LIU T C, LIN L P, BI X X, et al. In situ quantification of interphasial chemistry in Li-ion battery[J]. Nature Nanotechnology, 2019, 14(1): 50-56. DOI:10.1038/s41565-018-0284-y. |
15 | JIA L L JI Y C, YANG K, et al. Interface reconstruction study by functional scanning probe microscope in Li-ion battery research[J]. Chinese Journal of Structural Chemistry, 2020, 39(2): 200-205. DOI: 10.14102/j.cnki.0254-5861.2011-2749. |
16 | CHEN Y J, ZHANG M J, YUAN S, et al. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy[J]. Nano Energy, 2017, 36: 303-312. DOI:10.1016/j.nanoen.2017.04.045. |
17 | LIU P, YANG L Y, XIAO B W, et al. Revealing lithium battery gas generation for safer practical applications[J]. Advanced Functional Materials, 2022, 32(47): 2208586. DOI:10.1002/adfm.202208586. |
18 | LI S Y, ZHANG W D, WU Q, et al. Synergistic dual-additive electrolyte enables practical lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(35): 14935-14941. DOI:10.1002/anie.202004853. |
19 | LIU M Q, YAO L, JI Y C, et al. Nanoscale ultrafine zinc metal anodes for high stability aqueous zinc ion batteries[J]. Nano Letters, 2023, 23(2): 541-549. DOI:10.1021/acs.nanolett.2c03919. |
20 | BRUCKENSTEIN S, GADDE R R. Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products[J]. Journal of the American Chemical Society, 1971, 93(3): 793-794. DOI:10.1021/ja00732a049. |
21 | ZHANG B D, WANG L L, WANG X T, et al. Sustained releasing superoxo scavenger for tailoring the electrode-electrolyte interface on Li-rich cathode[J]. Energy Storage Materials, 2022, 53: 492-504. DOI:10.1016/j.ensm.2022.09.032. |
22 | WANG Y H, ZHENG S S, YANG W M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water[J]. Nature, 2021, 600(7887): 81-85. DOI:10.1038/s41586-021-04068-z. |
23 | GU Y, TANG S, YI J, et al. Nanostructure-based plasmon-enhanced Raman spectroscopic strategies for characterization of the solid–electrolyte interphase: Opportunities and challenges[J]. The Journal of Physical Chemistry C, 2023, 127(28): 13466-13477. DOI:10.1021/acs.jpcc.3c02954. |
24 | ZHANG Y R, KATAYAMA Y, TATARA R, et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy[J]. Energy & Environmental Science, 2020, 13(1): 183-199. DOI:10.1039/C9EE02543J. |
25 | HU J T, JI Y C, ZHENG G R, et al. Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration[J]. Aggregate, 2022, 3(1): e153. DOI:10.1002/agt2.153. |
26 | XIANG J W, YANG L Y, YUAN L X, et al. Alkali-metal anodes: From lab to market[J]. Joule, 2019, 3(10): 2334-2363. DOI:10.1016/j.joule.2019.07.027. |
27 | CAO X, XU Y B, ZOU L F, et al. Stability of solid electrolyte interphases and calendar life of lithium metal batteries[J]. Energy & Environmental Science, 2023, 16(4): 1548-1559. DOI:10.1039/D2EE03557J. |
28 | FENG G X, JIA H, SHI Y P, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. DOI:10.1038/s41565-023-01316-3. |
29 | WANG Y C, JI Y C, YIN Z W, et al. Tuning rate-limiting factors for graphite anodes in fast-charging Li-ion batteries[J]. Advanced Functional Materials, 2024, 34(29): 2401515. DOI:10.1002/adfm.202401515. |
30 | TU S B, ZHANG B, ZHANG Y, et al. Fast-charging capability of graphite-based lithium-ion batteries enabled by Li3P-based crystalline solid-electrolyte interphase[J]. Nature Energy, 2023, 8: 1365-1374. DOI:10.1038/s41560-023-01387-5. |
31 | BAO C Y, WANG B, LIU P, et al. Solid electrolyte interphases on sodium metal anodes[J]. Advanced Functional Materials, 2020, 30(52): 2004891. DOI:10.1002/adfm.202004891. |
32 | WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): 2003092. DOI:10.1002/aenm.202003092. |
33 | ZHAO Q, STALIN S, ARCHER L A. Stabilizing metal battery anodes through the design of solid electrolyte interphases[J]. Joule, 2021, 5(5): 1119-1142. DOI:10.1016/j.joule.2021.03.024. |
34 | ZHANG J G, XU W, XIAO J, et al. Lithium metal anodes with nonaqueous electrolytes[J]. Chemical Reviews, 2020, 120(24): 13312-13348. DOI:10.1021/acs.chemrev.0c00275. |
35 | WANG Z X, SUN Z H, LI J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes[J]. Chemical Society Reviews, 2021, 50(5): 3178-3210. DOI:10.1039/d0cs01017k. |
36 | LIU X R, DENG X, LIU R R, et al. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: Solid electrolyte interphase growth and mechanical properties[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 20317-20323. DOI:10.1021/am505847s. |
37 | TAN S, SHADIKE Z, LI J Z, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nature Energy, 2022, 7: 484-494. DOI:10.1038/s41560-022-01020-x. |
38 | WAN H L, XU J J, WANG C S. Designing electrolytes and interphases for high-energy lithium batteries[J]. Nature Reviews Chemistry, 2024, 8(1): 30-44. DOI:10.1038/s41570-023-00557-z. |
39 | CHEN Y, YU Q, XU G G, et al. In situ observation of the insulator-to-metal transition and nonequilibrium phase transition for Li1- xCoO2 films with preferred (003) orientation nanorods[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33043-33053. DOI:10.1021/acsami.9b11140. |
40 | GUO C, ZHANG F L, HAN X, et al. Intrinsic descriptor guided noble metal cathode design for Li-CO2 battery[J]. Advanced Materials, 2023, 35(33): 2302325. DOI:10.1002/adma.202302325. |
41 | XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries[J]. Advanced Materials, 2018, 30(51): 1803124. DOI:10.1002/adma.201803124. |
42 | WANG M M, YANG K, JI Y C, et al. Developing highly reversible Li-CO2 batteries: From on-chip exploration to practical application[J]. Energy & Environmental Science, 2023, 16(9): 3960-3967. DOI:10.1039/D3EE00794D. |
43 | MA L, YU T W, TZOGANAKIS E, et al. Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: Recent progress and perspective[J]. Advanced Energy Materials, 2018, 8(22): 1800348. DOI:10.1002/aenm.201800348. |
44 | YANG K, LI Y W, JIA L L, et al. Atomic/nano-scale in situ probing the shuttling effect of redox mediator in Na-O2 batteries[J]. Journal of Energy Chemistry, 2021, 56: 438-443. DOI:10.1016/j.jechem.2020.08.025. |
45 | LU B Y, CHEN B, WANG D S, et al. Engineering the interfacial orientation of MoS2/Co9S8 bidirectional catalysts with highly exposed active sites for reversible Li-CO2 batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(6): e2216933120. DOI:10.1073/pnas.2216933120. |
46 | HUANG W Y, QIU J M, JI Y C, et al. Exploiting cation intercalating chemistry to catalyze conversion-type reactions in batteries[J]. ACS Nano, 2023, 17(6): 5570-5578. DOI:10.1021/acsnano.2c11029. |
47 | SHAO Q J, ZHU S D, CHEN J. A review on lithium-sulfur batteries: Challenge, development, and perspective[J]. Nano Research, 2023, 16(6): 8097-8138. DOI:10.1007/s12274-022-5227-0. |
48 | CHEN S M, SONG Z B, JI Y C, et al. Suppressing polysulfide shuttling in lithium-sulfur batteries via a multifunctional conductive binder[J]. Small Methods, 2021, 5(10): 2100839. DOI:10.1002/smtd.202100839. |
49 | HUANG J Q, BOLES S T, TARASCON J M. Sensing as the key to battery lifetime and sustainability[J]. Nature Sustainability, 2022, 5: 194-204. DOI:10.1038/s41893-022-00859-y. |
50 | HAN G C, YAN J Z, GUO Z, et al. A review on various optical fibre sensing methods for batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111514. DOI:10.1016/j.rser.2021.111514. |
51 | DAY R P, XIA J, PETIBON R, et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging[J]. Journal of the Electrochemical Society, 2015, 162(14): A2577-A2581. DOI:10.1149/2.0181514jes. |
52 | ZHANG W T, WENG M Y, ZHANG M Z, et al. Revealing morphology evolution of lithium dendrites by large-scale simulation based on machine learning force field[J]. Advanced Energy Materials, 2023, 13(4): 2202892. DOI:10.1002/aenm. 202202892. |
[1] | Shuyuan CHEN, Chen CHENG, Xiao XIA, Huanxin JU, Liang ZHANG. Research progress in the X-ray spectroscopy investigation of cathode materials for high-energy-density secondary batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 113-129. |
[2] | Yiming YAO, Weiling LUAN, Ying CHEN, Min SUN. Recent progress in aging degradation of lithium-ion battery materials via in-situ optical microscopy [J]. Energy Storage Science and Technology, 2023, 12(3): 777-791. |
[3] | Jian TU, Xiongwen XU, Haibo HU, Yang NIE, Tao ZENG, Qiushi SUN, Hao CHENG, Jian XIE, Xinbing ZHAO. Fabrication of gel-type Li-ion batteries and their electrochemical and safety properties [J]. Energy Storage Science and Technology, 2021, 10(3): 1025-1031. |
[4] | Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics [J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. |
[5] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[6] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||