Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 90-103.doi: 10.19799/j.cnki.2095-4239.2024.0574
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wei CAO1(), Fei CHEN1, Xiangdong KONG2, Zhicheng ZHU1, Xuebing HAN3(
), Languang LU3, Yuejiu ZHENG1(
)
Received:
2024-06-23
Revised:
2024-07-23
Online:
2025-01-28
Published:
2025-02-25
Contact:
Xuebing HAN, Yuejiu ZHENG
E-mail:caowei6790@163.com;hanxuebing@mail.tsinghua.edu.cn;yuejiu_zheng@163.com
CLC Number:
Wei CAO, Fei CHEN, Xiangdong KONG, Zhicheng ZHU, Xuebing HAN, Languang LU, Yuejiu ZHENG. Progress of coating process for lithium-ion battery electrodes[J]. Energy Storage Science and Technology, 2025, 14(1): 90-103.
Fig. 8
(a) Dual chamber[27]; (b) Gradient chamber[27]; (c) Hanger type chamber[27]; (d) Cloud view of pressure distribution in dual chamber[27]; (e) Gradient cavity pressure distribution cloud[27]; (f) Hanger type chamber pressure distribution cloud[27]; (g) Velocity distribution for different cavity sizes[39]"
1 | STEINSTRAETER M, BUBERGER J, MINNERUP K, et al. Controlling cabin heating to improve range and battery lifetime of electric vehicles[J]. eTransportation, 2022, 13: 100181. DOI: 10.1016/j.etran.2022.100181. |
2 | LIU H R, ZHAO M L, BAI X D, et al. An ultrafast rechargeable and high durability lithium metal battery using composite electrolyte with the three-dimensional inorganic framework by Li6.4La3Zr1.4Ta0.6O12 surface functionalization[J]. eTransportation, 2023, 16: 100234. DOI: 10.1016/j.etran.2023.100234. |
3 | LAI X, CHEN Q W, TANG X P, et al. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective[J]. eTransportation, 2022, 12: 100169. DOI: 10.1016/j.etran.2022.100169. |
4 | GUO S Q, WANG Y B, DAI L, et al. All-electric ship operations and management: Overview and future research directions[J]. eTransportation, 2023, 17: 100251. DOI: 10.1016/j.etran. 2023.100251. |
5 | LAI X, GU H H, CHEN Q W, et al. Investigating greenhouse gas emissions and environmental impacts from the production of lithium-ion batteries in China[J]. Journal of Cleaner Production, 2022, 372: 133756. DOI: 10.1016/j.jclepro.2022.133756. |
6 | SHARMILI N, NAGI R, WANG P F. A review of research in the Li-ion battery production and reverse supply chains[J]. Journal of Energy Storage, 2023, 68: 107622. DOI: 10.1016/j.est. 2023.107622. |
7 | MAULER L, DUFFNER F, LEKER J. Economies of scale in battery cell manufacturing: The impact of material and process innovations[J]. Applied Energy, 2021, 286: 116499. DOI: 10.1016/j.apenergy.2021.116499. |
8 | 陈飞, 孔祥栋, 孙跃东, 等. 锂离子电池制造工艺仿真技术进展[J]. 汽车工程, 2023, 45(9): 1516-1529, 1542. DOI: 10.19562/j.chinasae.qcgc.2023.09.002. |
CHEN F, KONG X D, SUN Y D, et al. Progress in simulation technology of lithium-ion battery manufacturing process[J]. Automotive Engineering, 2023, 45(9): 1516-1529, 1542. DOI: 10.19562/j.chinasae.qcgc.2023.09.002. | |
9 | GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1: 204. DOI: 10.1038/s41928-018-0048-6. |
10 | 罗雨. 动力锂离子电池制备工艺对一致性影响研究[D]. 长沙: 湖南大学, 2012. |
LUO Y. Study on the influence of preparation technology of power lithium ion battery on consistency[D]. Changsha: Hunan University, 2012. | |
11 | MOHANTY D, HOCKADAY E, LI J, et al. Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources[J]. Journal of Power Sources, 2016, 312: 70-79. DOI: 10.1016/j.jpowsour.2016.02.007. |
12 | ZHENG H H, LI J, SONG X Y, et al. A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes[J]. Electrochimica Acta, 2012, 71: 258-265. DOI: 10.1016/j.electacta. 2012.03.161. |
13 | SONG Y Z, WANG X Q, CUI H, et al. Probing the particle size dependence of nonhomogeneous degradation in nickel-rich cathodes for high-energy lithium-ion batteries[J]. eTransportation, 2023, 16: 100223. DOI: 10.1016/j.etran.2022.100223. |
14 | SUN Y K, YUAN Y B, LU L G, et al. A comprehensive research on internal short circuits caused by copper particle contaminants on cathode in lithium-ion batteries[J]. eTransportation, 2022, 13: 100183. DOI: 10.1016/j.etran.2022.100183. |
15 | YAN B, LIM C, SONG Z B, et al. Analysis of polarization in realistic Li ion battery electrode microstructure using numerical simulation[J]. Electrochimica Acta, 2015, 185: 125-141. DOI: 10.1016/j.electacta.2015.10.086. |
16 | SAMYN P, SCHOUKENS G, VAN DEN ABBEELE H, et al. Application of polymer nanoparticle coating for tuning the hydrophobicity of cellulosic substrates[J]. Journal of Coatings Technology and Research, 2011, 8(3): 363-373. DOI: 10.1007/s11998-010-9309-7. |
17 | 谢小英. 精密涂布技术的发展状况[J]. 影像技术, 2017, 29(1): 4-7. DOI: 10.3969/j.issn.1001-0270.2017.01.01. |
XIE X Y. The development of precision coating technology[J]. Image Technology, 2017, 29(1): 4-7. DOI: 10.3969/j.issn.1001-0270.2017.01.01. | |
18 | 胡焱清, 李子繁, 孙红旗. 耐水改性聚乙烯醇涂布膜的研究进展及发展前景[J]. 包装工程, 2010, 31(1): 108-110, 114. DOI: 10.19554/j.cnki.1001-3563.2010.01.032. |
HU Y Q, LI Z F, SUN H Q. Research progress and development prospects of water resistant modified PVA coated films[J]. Packaging Engineering, 2010, 31(1): 108-110, 114. DOI: 10. 19554/j.cnki.1001-3563.2010.01.032. | |
19 | 秦睿睿, 许文才, 陈邦设, 等. 涂布技术研究进展[J]. 包装工程, 2012, 33(3): 132-136. DOI: 10.19554/j.cnki.1001-3563.2012.03.032. |
QIN R R, XU W C, CHEN B S, et al. Progress of coating technology[J]. Packaging Engineering, 2012, 33(3): 132-136. DOI: 10.19554/j.cnki.1001-3563.2012.03.032. | |
20 | 赵伯元. 锂离子电池极片涂布技术和设备研究[J]. 电池, 2000, 30(2): 56-58. DOI: 10.3969/j.issn.1001-1579.2000.02.003. |
ZHAO B Y. Coating technology and equipment for lithium ion electrodes[J]. Battery Bimonthly, 2000, 30(2): 56-58. DOI: 10.3969/j.issn.1001-1579.2000.02.003. | |
21 | CHEN F, CHEN T X, WU Z X, et al. Optimizing lithium-ion battery electrode manufacturing: Advances and prospects in process simulation[J]. Journal of Power Sources, 2024, 610: 234717. DOI: 10.1016/j.jpowsour.2024.234717. |
22 | COYLE D J, MACOSKO C W, SCRIVEN L E. Film-splitting flows in forward roll coating[J]. Journal of Fluid Mechanics, 1986, 171: 183. DOI: 10.1017/s0022112086001416. |
23 | 梁卫华, 吴大勇, 舒均国. 逗号刮刀涂布流场理论分析与数值模拟[J]. 储能科学与技术, 2021, 10(2): 565-576. DOI: 10.19799/j.cnki.2095-4239.2020.0364. |
LIANG W H, WU D Y, SHU J G. Theoretical analysis and numerical simulation of comma roll coating flow field[J]. Energy Storage Science and Technology, 2021, 10(2): 565-576. DOI: 10.19799/j.cnki.2095-4239.2020.0364. | |
24 | KREBS F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques[J]. Solar Energy Materials and Solar Cells, 2009, 93(4): 394-412. DOI: 10.1016/j.solmat.2008.10.004. |
25 | 林黎明. 动力锂电池浆料狭缝式挤压涂布流场数值模拟研究[D]. 郑州: 郑州大学, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.003690. |
LIN L M. Numerical simulation of flow field in slit extrusion coating of power lithium battery slurry[D]. Zhengzhou: Zhengzhou University, 2021. DOI: 10.27466/d.cnki.gzzdu.2021.003690. | |
26 | 包能胜, 刘小山, 马婉, 等. 辊式涂布两辊间隙施涂过程的数值计算分析[J]. 包装工程, 2016, 37(23): 6-12. DOI: 10.19554/j.cnki.1001-3563.2016.23.002. |
BAO N S, LIU X S, MA W, et al. Numerical calculation and analysis on roll coating process of the clearance between two rollers[J]. Packaging Engineering, 2016, 37(23): 6-12. DOI: 10.19554/j.cnki.1001-3563.2016.23.002. | |
27 | 周芸福. 动力锂电池极片挤压式涂布机头研究[D]. 南京: 东南大学, 2014. |
ZHOU Y F. Research on lithium power battery pole piece extrusion coating head [D]. Nanjing: Southeast University, 2014. | |
28 | 古日明. 一种涂布机构: CN209597537U[P]. 2019-11-08. |
GU R M. A coating mechanism: CN2095975370 [P]. 2019-11-08. | |
29 | 迟彩霞, 张双虎, 乔秀丽, 等. 狭缝式涂布技术的研究进展[J]. 应用化工, 2016, 45(2): 360-363, 366. DOI: 10.16581/j.cnki.issn1671-3206.20151224.019. |
CHI C X, ZHANG S H, QIAO X L, et al. Research progress on slot-die coating technology[J]. Applied Chemical Industry, 2016, 45(2): 360-363, 366. DOI: 10.16581/j.cnki.issn1671-3206.20151224.019. | |
30 | KIM S, LEE J, LEE C. Computational fluid dynamics model for thickness and uniformity prediction of coating layer in slot-die process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 2991-2997. DOI: 10.1007/s00170-019-04093-3. |
31 | HAN G H, LEE S H, AHN W G, et al. Effect of shim configuration on flow dynamics and operability windows in stripe slot coating process[J]. Journal of Coatings Technology and Research, 2014, 11(1): 19-29. DOI: 10.1007/s11998-013-9485-3. |
32 | JIN G L, AHN W G, KIM S J, et al. Effect of shim configuration on internal die flows for non-Newtonian coating liquids in slot coating process[J]. Korea-Australia Rheology Journal, 2016, 28(2): 159-164. DOI: 10.1007/s13367-016-0015-6. |
33 | CHANG H M, CHANG Y R, LIN C F, et al. Comparison of vertical and horizontal slot die coatings[J]. Polymer Engineering & Science, 2007, 47(11): 1927-1936. DOI: 10.1002/pen.20910. |
34 | 董骄, 曹勇, 苏峰, 等. 一种锂离子电池双面涂布装置: CN216225137U[P]. 2022-04-08. |
35 | 陈晚成. 电池极片双面同时涂布的设备: CN217222194U[P]. 2022-08-19. |
36 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI: 10.1021/acs.chemrev.1c00108. |
37 | 白自艳. 涂布机的挤压模头研究和供料远程监控系统开发[D]. 西安: 长安大学, 2018. |
BAI Z Y. Research on extrusion die of coating machine and development of remote monitoring system for feeding[D]. Xi'an: Chang'an University, 2018. | |
38 | JUNG H, NAM J. Numerical analysis of pulsatile flows in a slot-die manifold[J]. Journal of Coatings Technology and Research, 2019, 16(4): 1141-1151. DOI: 10.1007/s11998-019-00190-w. |
39 | 梁军杰, 周华民, 陶波, 等. 双腔式锂电池涂布浆料挤压模头的流场数值模拟与分析[J]. 模具工业, 2016, 42(10): 5-10. DOI: 10.16787/j.cnki.1001-2168.dmi.2016.10.002. |
LIANG J J, ZHOU H M, TAO B, et al. Numerical simulation and analysis of the flow field in double-cavity extrusion die with coating Li-ion power battery[J]. Die & Mould Industry, 2016, 42(10): 5-10. DOI: 10.16787/j.cnki.1001-2168.dmi.2016.10.002. | |
40 | 田坤, 龚根飞, 陈炜. 一种双腔挤压式涂布模头: CN210079946U[P]. 2020-02-18. |
41 | BOOY M L. A network flow analysis of extrusion dies and other flow systems[J]. Polymer Engineering & Science, 1982, 22(7): 432-437. DOI: 10.1002/pen.760220707. |
42 | GONG X S, HAN J, YAN F, et al. Numerical and experimental investigation on formation of the film for different die lip configurations in lithium-ion battery electrode slot-die coating[J]. Journal of Coatings Technology and Research, 2024, 21(2): 481-492. DOI: 10.1007/s11998-023-00874-4. |
43 | HUANG T L, TAN P H, ZHONG Z Y, et al. Numerical and experimental investigation on the defect formation in lithium-ion-battery electrode-slot coating[J]. Chemical Engineering Science, 2022, 258: 117744. DOI: 10.1016/j.ces.2022.117744. |
44 | LEE S M, NAM J. Analysis of slot coating flow under tilted die[J]. AIChE Journal, 2015, 61(5): 1745-1758. DOI: 10.1002/aic.14752. |
45 | LEE S H, KOH H J, RYU B K, et al. Operability coating windows and frequency response in slot coating flows from a viscocapillary model[J]. Chemical Engineering Science, 2011, 66(21): 4953-4959. DOI: 10.1016/j.ces.2011.04.044. |
46 | CHANG Y R, CHANG H M, LIN C F, et al. Three minimum wet thickness regions of slot die coating[J]. Journal of Colloid and Interface Science, 2007, 308(1): 222-230. DOI: 10.1016/j.jcis.2006.11.054. |
47 | TAN P H, DIAO S M, HUANG T L, et al. Numerical and experimental study on coating uniformity control in simultaneous double-sided slot coating with a novel contacted slot die[J]. Chemical Engineering Science, 2020, 222: 115716. DOI: 10.1016/j.ces.2020.115716. |
48 | 施柳柳, 陈怡沁, 周静红, 等. LiFePO4涂层厚度对锂离子电池电化学性能的影响[J]. 电子元件与材料, 2019, 38(5): 52-56, 62. DOI: 10.14106/j.cnki.1001-2028.2019.05.010. |
SHI L L, CHEN Y Q, ZHOU J H, et al. Effects of LiFePO4 coating thickness on electrochemical performance of lithium-ion batteries[J]. Electronic Components and Materials, 2019, 38(5): 52-56, 62. DOI: 10.14106/j.cnki.1001-2028.2019.05.010. | |
49 | 刘伯峥, 李海婷, 曾涛, 等. LiFePO4涂覆量对锂离子电池性能的影响[J]. 电池, 2021, 51(5): 482-485. DOI: 10.19535/j.1001-1579.2021.05.011. |
LIU B Z, LI H T, ZENG T, et al. Effect of LiFePO4 coating amount on the performance of Li-ion battery[J]. Battery Bimonthly, 2021, 51(5): 482-485. DOI: 10.19535/j.1001-1579.2021.05.011. | |
50 | 汤思佳. 基于激光三角法厚度绝对测量技术研究[D]. 长春: 长春理工大学, 2010. |
TANG S J. Resrarch on absolute thickness measurement technology based on laser triangulation[D]. Changchun: Changchun University of Science and Technology, 2010. | |
51 | MOHANTY D, LI J L, BORN R, et al. Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods[J]. Analytical Methods, 2014, 6(3): 674-683. DOI: 10.1039/C3AY41140K. |
52 | DVOINISHNIKOV S V, RAKHMANOV V V, MELEDIN V G, et al. Experimental assessment of the applicability of laser triangulators for measurements of the thickness of hot rolled product[J]. Measurement Techniques, 2015, 57(12): 1378-1385. DOI: 10.1007/s11018-015-0638-x. |
53 | MCGOVERN M E, BRUDER D D, HUEMILLER E D, et al. A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing[J]. Journal of Power Sources, 2023, 561: 232742. DOI: 10.1016/j.jpowsour.2023.232742. |
54 | LI J L, DU Z J, RUTHER R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries[J]. JOM, 2017, 69(9): 1484-1496. DOI: 10.1007/s11837-017-2404-9. |
55 | ETIEMBLE A, BESNARD N, ADRIEN J, et al. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography[J]. Journal of Power Sources, 2015, 298: 285-291. DOI: 10.1016/j.jpowsour.2015.08.030. |
56 | 王云辉, 孙青山, 李松鞠. β射线在锂离子电池生产中的应用[J]. 电池, 2018, 48(5): 347-349. DOI: 10.19535/j.1001-1579. 2018. 05.014. |
WANG Y H, SUN Q S, LI S J. Application of β-ray online measurement technique in Li-ion battery production[J]. Battery Bimonthly, 2018, 48(5): 347-349. DOI: 10.19535/j.1001-1579.2018.05.014. | |
57 | 胡玥红. 基于机器视觉的锂电池极片缺陷检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
HU Y H. Research on defect detection of lithium battery electrode sheet based on machine vision[D]. Harbin: Harbin Institute of Technology, 2015. | |
58 | 肖安七. 基于机器视觉的涂布缺陷检测系统的研究[D]. 武汉: 华中科技大学, 2017. |
XIAO A Q. Research on coating defect detection system based on machine vision [D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
59 | 徐挺, 万达航, 邹志庭, 等. 锂电池极片涂布缺陷明暗场扫描成像检测技术[J]. 激光与光电子学进展, 2022, 59(18): 83-88. |
XU T, WAN D H, ZOU Z T, et al. Defect inspection of lithium battery electrode coating via bright and dark field scanning imaging techniques[J]. Laser & Optoelectronics Progress, 2022, 59(18): 83-88. | |
60 | 倪君仪. 基于机器视觉的锂电池电极片缺陷检测算法研究[D]. 广州: 华南理工大学, 2022. DOI: 10.27151/d.cnki.ghnlu.2022.000201. |
NI J Y. Research on defect detection algorithm of lithium battery electrode based on machine vision [D]. Guangzhou: South China University of Technology, 2022. DOI: 10.27151/d.cnki.ghnlu. 2022.000201. |
[1] | Zhiyong WANG, Junyao CAI, Yingqi SHE, Shulin ZHONG, Kanghua PAN. Surface-modification of graphite with N-heterocyclic conducting polymers as high performance anodes for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2511-2518. |
[2] | Jingjing LEI, Zehao LI, Binbin CHEN, Denggao HUANG. Estimation of internal battery temperature based on electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2024, 13(8): 2823-2834. |
[3] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[4] | Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode [J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309. |
[5] | Yihan Li, Shigang LU, Jing WANG, Wangjun ZHA, Zhenghang DAI, Yitong GUO, Zexi YANG. Effect of irreversible lithium plating at low temperature on the performance degradation of LiFePO4 lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(10): 3656-3665. |
[6] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. |
[7] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[8] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[9] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[10] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[11] | Yikun WU, Jie HE, Le YANG, Weili SONG, Haosen CHEN. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. |
[12] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[13] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[14] | Xinyu LI, Xuebing HAN, Languang LU, Jianqiu LI, Minggao OUYANG. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse [J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. |
[15] | Minyuan GUAN, Jianliang SHEN, Guohua XU, Shun TANG, Weixin ZHANG, Yuancheng CAO. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||