Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1564-1573.doi: 10.19799/j.cnki.2095-4239.2024.1068
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jinming YUE(), Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI(
)
Received:
2024-11-14
Revised:
2024-11-23
Online:
2025-04-28
Published:
2025-05-20
Contact:
Hong LI
E-mail:jmyue@iphy.ac.cn;hli@iphy.ac.cn
CLC Number:
Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection[J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573.
Table 1
The names, abbreviations, CAS number, corresponding serial numbers and mass-to-charge ratios of 19 components"
序号 | 名称 | 英文缩写 | CAS号 | m/z |
---|---|---|---|---|
1 | 1,3-二氧环戊烷 | DOL | 646-06-0 | 73,44,45 |
2 | 甲基三氟乙基碳酸酯 | FEMC | 156783-95-8 | 59,83,45 |
3 | 丙酸甲酯 | MP | 554-12-1 | 57,59,88 |
4 | 乙二醇二甲醚 | DME | 110-71-4 | 45,60,58 |
5 | 碳酸甲乙酯 | EMC | 623-53-0 | 45,77,59 |
6 | 碳酸亚乙烯酯 | VC | 872-36-6 | 86,42,58 |
7 | 碳酸二乙酯 | DEC | 105-58-8 | 45,91,63 |
8 | 丙酸丙酯 | PC | 106-36-5 | 57,75,43 |
9 | 氟代碳酸乙烯酯 | FEC | 114435-02-8 | 62,43,106 |
10 | 二乙二醇二甲醚 | DEGDME | 111-96-6 | 59,58,45 |
11 | 碳酸乙烯酯 | EC | 96-49-1 | 43,88,44 |
12 | 碳酸丙烯酯 | PC | 108-32-7 | 57,43,87 |
13 | 碳酸乙烯亚乙酯 | VEC | 4427-96-7 | 42,39,40 |
14 | 硫酸乙烯酯 | DTD | 1072-53-3 | 124,43,48 |
15 | 1,3丙磺酸内酯 | PS | 1120-71-4 | 58,57,41 |
16 | 丙烯基-1,3磺酸内酯 | PST | 21806-61-1 | 66,43,65 |
17 | 三(三甲基硅基)磷酸酯 | TMSP | 10497-05-9 | 299,73,300 |
18 | 环己基苯 | CHB | 827-52-1 | 104,117,91 |
19 | 甲烷二磺酸亚甲酯 | MMDS | 99591-74-9 | 95,65,78 |
1 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemInform, 2004, 35(50): DOI: 10. 1002/chin.200450271. |
2 | MARCINEK M, SYZDEK J, MARCZEWSKI M, et al. Electrolytes for Li-ion transport–review[J]. Solid State Ionics, 2015, 276: 107-126. DOI: 10.1016/j.ssi.2015.02.006. |
3 | MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: DOI: 10.1038/natrevmats.2016.103. |
4 | LIU Y K, ZHAO C Z, DU J, et al. Research progresses of liquid electrolytes in lithium-ion batteries[J]. Small, 2023, 19(8): DOI: 10.1002/smll.202205315. |
5 | WANG Q D, ZHAO C L, WANG J L, et al. High entropy liquid electrolytes for lithium batteries[J]. Nature Communications, 2023, 14(1): 440. DOI: 10.1038/s41467-023-36075-1. |
6 | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. DOI: 10.1016/j.jpowsour.2006.07.074. |
7 | LI J N, YANG J Z, JI Z Q, et al. Prospective application, mechanism, and deficiency of lithium bis(oxalate)borate as the electrolyte additive for lithium-batteries[J]. Advanced Energy Materials, 2023, 13(35): DOI: 10.1002/aenm.202301422. |
8 | CHENG X B, HOU T Z, ZHANG R, et al. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries[J]. Advanced Materials, 2016, 28(15): 2888-2895. DOI: 10.1002/adma.201506124. |
9 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: 16114. DOI: 10.1038/nenergy.2016.114. |
10 | WANG Y, YANG X, MENG Y F, et al. Fluorine chemistry in rechargeable batteries: Challenges, progress, and perspectives[J]. Chemical Reviews, 2024, 124(6): 3494-3589. DOI: 10.1021/acs.chemrev.3c00826. |
11 | FORERO-SABOYA J, MOISEEV I A, VLARA M L, et al. A hydridoaluminate additive producing a protective coating on Ni-rich cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2024, 14(34): DOI: 10.1002/aenm.202402051. |
12 | WU W, NIU F, SUN C K, et al. Extreme fast charging of lithium metal batteries enabled by a molten-salt-derived nanocrystal interphase[J]. Advanced Materials, 2024, 36(32): DOI: 10.1002/adma.202404630. |
13 | WANG X Y, YANG C, YAO L B, et al. Anion/cation solvation engineering for a ternary low-concentration electrolyte toward high-voltage and long-life sodium-ion batteries[J]. Advanced Functional Materials, 2024, 34(26): DOI: 10.1002/adfm. 202315007. |
14 | WAN S, MA W T, WANG Y T, et al. Electrolytes design for extending the temperature adaptability of lithium-ion batteries: From fundamentals to strategies[J]. Advanced Materials, 2024, 36(21): DOI: 10.1002/adma.202311912. |
15 | ZHANG Y, LU Y, JIN J, et al. Electrolyte design for lithium-ion batteries for extreme temperature applications[J]. Advanced Materials, 2024, 36(13): DOI: 10.1002/adma.202308484. |
16 | SHI X M, JIA Z Z, WANG D H, et al. Phonon engineering in solid polymer electrolyte toward high safety for solid-state lithium batteries[J]. Advanced Materials, 2024, 36(33): DOI: 10.1002/adma.202405097. |
17 | HAYAMIZU K, AKIBA E. An evaluation method of liquid electrolytes for lithium batteries by the multinuclear pulsed-gradient spin-echo NMR—The diffusing radii of lithium ion and anions in organic solvents[J]. Electrochemistry, 2003, 71(12): 1052-1054. DOI: 10.5796/electrochemistry.71.1052. |
18 | BHALKIKAR A, MARIN C M, CHEUNG C L. Method development for separating organic carbonates by ion-moderated high-performance liquid chromatography[J]. Journal of Separation Science, 2016, 39(23): 4484-4491. DOI: 10.1002/jssc.201600743. |
19 | WEBER W, KRAFT V, GRÜTZKE M, et al. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte[J]. Journal of Chromatography A, 2015, 1394: 128-136. DOI: 10.1016/j.chroma.2015.03.048. |
20 | LEIßING M, WINTER M, WIEMERS-MEYER S, et al. A method for quantitative analysis of gases evolving during formation applied on LiNi0.6Mn0.2Co0.2O2 ∣∣ natural graphite lithium ion battery cells using gas chromatography-barrier discharge ionization detector[J]. Journal of Chromatography A, 2020, 1622: DOI: 10.1016/j.chroma.2020.461122. |
21 | RAVDEL B, ABRAHAM K M, GITZENDANNER R, et al. Thermal stability of lithium-ion battery electrolytes[J]. Journal of Power Sources, 2003, 119: 805-810. DOI: 10.1016/S0378-7753(03)00257-X. |
22 | 杨三东, 李乃杰, 马周, 等. 纳升液相色谱仪器的研究进展[J]. 色谱, 2021, 39(10): 1065-1076. DOI: 10.3724/SP.J.1123.2021.06017. |
YANG S D, LI N J, MA Z, et al. Research advances in nano liquid chromatography instrumentation[J]. Chinese Journal of Chromatography, 2021, 39(10): 1065-1076. DOI: 10.3724/SP.J. 1123.2021.06017. | |
23 | MÖNNIGHOFF X, MURMANN P, WEBER W, et al. Post-mortem investigations of fluorinated flame retardants for lithium ion battery electrolytes by gas chromatography with chemical ionization[J]. Electrochimica Acta, 2017, 246: 1042-1051. DOI: 10.1016/j.electacta.2017.06.125. |
24 | 麻姗姗, 方婷婷, 杨刘倩, 等. 色谱质谱技术在锂离子电池研究中的应用[J]. 储能科学与技术, 2022, 11(1): 60-65. DOI: 10.19799/j.cnki.2095-4239.2021.0208. |
MA S S, FANG T T, YANG L Q, et al. Application of chromatography-mass spectrometry in study of lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. DOI: 10.19799/j.cnki.2095-4239.2021.0208. | |
25 | 王成云, 薛晓东, 冀红略, 等. 气质联用法测定锂离子电池电解液中有机磷阻燃剂的含量[J]. 电池工业, 2019, 23(4): 204-210, 215. DOI: 10.3969/j.issn.1008-7923.2019.04.007. |
WANG C Y, XUE X D, JI H L, et al. Determination of organophosphate retardants in lithium-ion battery electrolyte by GC/MS method[J]. Chinese Battery Industry, 2019, 23(4): 204-210, 215. DOI: 10.3969/j.issn.1008-7923.2019.04.007. | |
26 | 王芹, 冯景春, 冯开. 气相色谱法及其应用[J]. 广东化工, 2014, 41(12): 202, 208. |
WANG Q, FENG J C, FENG K. Gas chromatography and its application[J]. Guangdong Chemical Industry, 2014, 41(12): 202, 208. | |
27 | 冷晶晶, 金荣. 气相色谱仪的原理、组成及应用[J]. 化学工程与装备, 2022(1): 225-226. DOI: 10.19566/j.cnki.cn35-1285/tq. 2022.01.121. |
LENG J J, JIN R. Principle, composition and application of gas chromatograph[J]. Chemical Engineering & Equipment, 2022(1): 225-226. DOI: 10.19566/j.cnki.cn35-1285/tq.2022.01.121. | |
28 | 陈志, 李倩倩, 孙加燕, 等. 色谱图中拖尾峰峰宽及分离度的新计算方法及其应用[J]. 中国医药工业杂志, 2023, 54(9): 1374-1381. DOI: 10.16522/j.cnki.cjph.2023.09.014. |
CHEN Z, LI Q Q, SUN J Y, et al. A new calculation method for peak width and resolution of trailing peaks in chromatograms and its application[J]. Chinese Journal of Pharmaceuticals, 2023, 54(9): 1374-1381. DOI: 10.16522/j.cnki.cjph.2023.09.014. | |
29 | 樊美霞, 汪毅, 戴鹏, 等. 气相色谱法测定微量乙酸乙酯含量方法研究[J]. 广东化工, 2024, 51(8): 104-108. DOI: 10.3969/j.issn.1007-1865.2024.08.034. |
FAN M X, WANG Y, DAI P, et al. Amethod for the determination of trace amounts of ethyl acetate by gas chromatography[J]. Guangdong Chemical Industry, 2024, 51(8): 104-108. DOI: 10. 3969/j.issn.1007-1865.2024.08.034. | |
30 | 冯徐根, 杨萌, 韩军. 气质联用法同时测定纺织品中17种邻苯二甲酸酯类增塑剂[J]. 质量安全与检验检测, 2023, 33(4): 16-22. |
FENG X G, YANG M, HAN J. Determination of 17 phthalates in textiles by gas chromatography-mass spectrometry[J]. Quality Safety Inspection and Testing, 2023, 33(4): 16-22. | |
31 | 张家颂. 环己烷中痕量组分的测定[J]. 合成纤维工业, 2023, 46(4): 91-95. DOI: 10.3969/j.issn.1001-0041.2023.04.027. |
ZHANG J S. Determination of trace components in cyclohexane[J]. China Synthetic Fiber Industry, 2023, 46(4): 91-95. DOI: 10.3969/j.issn.1001-0041.2023.04.027. | |
32 | 许建军, 陆进宇, 张晔, 等. 气相色谱仪检定中色谱柱的选择[J]. 化学分析计量, 2019, 28(S1): 63-66. DOI: 10.3969/j.issn.1008-6145. 2019.Z1.015. |
XU J J, LU J Y, ZHANG Y, et al. Selection of chromatographic columns in the verification of gas chromatograph[J]. Chemical Analysis and Meterage, 2019, 28(S1): 63-66. DOI: 10.3969/j.issn. 1008-6145.2019.Z1.015. | |
33 | 锂离子电池电解液用有机溶剂物性数据汇总[EB/OL]. https://www.docin.com/p-450220579.html. |
34 | 甲基三氟乙基碳酸酯[EB/OL]. https://www.chemsrc.com/cas/1567 83-95-8_193515.html. |
35 | NAEJUS R, DAMAS C, LEMORDANT D, et al. Excess thermodynamic properties of the ethylene carbonate-trifluoroethyl methyl carbonate and propylene carbonate-trifluoroethyl methyl carbonate systems at T = (298.15 or 315.15) K[J]. The Journal of Chemical Thermodynamics, 2002, 34(6): 795-806. DOI: 10.1006/jcht.2001.0877. |
36 | 程广玉, 刘新伟, 刘硕, 等. 调控电解液溶剂组分实现LCO/C低温18650电池循环寿命显著提升[J]. 储能科学与技术, 2024, 13(7): 2171-2180. DOI: 10.19799/j.cnki.2095-4239.2024.0374. |
CHENG G Y, LIU X W, LIU S, et al. Controlling electrolyte solvent components to enhance cycle life of LCO/C low-temperature 18650 batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2171-2180. DOI: 10.19799/j.cnki.2095-4239.2024.0374. | |
37 | 氟代碳酸乙烯酯[EB/OL]. https://www.chemicalbook.com/ProductChem icalPropertiesCB9420252.htm. |
[1] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[2] | Chenglong JIN, Mengting SUN, Qingfei MENG, Shuwei ZHANG, Zhou ZHOU, Yuyang QI. Design and application of wide-temperature electrolytes for Li/Cr8O21 batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1369-1376. |
[3] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[4] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[5] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[6] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[7] | Xingqun LIAO, Rui YANG, Lijuan YU, Dalin HU, Feng XIAO, Jing HU, Zhouguang LU. 2,6-pyridine dimethyl acetonitrile: A multifunctional electrolyte additive for stabilizing high-voltage LiCoO2 [J]. Energy Storage Science and Technology, 2025, 14(4): 1331-1339. |
[8] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[9] | Dequan HUANG, Tao WEI, Guangda YIN, Gang WEN, Jue HOU, Yi LIANG. Research on the application of siloxane solvent in high-voltage lithium metal batteries and electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(4): 1340-1351. |
[10] | Shiming LI. Application of artificial Intelligence in the fault detection of energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1698-1700. |
[11] | Tao YE, Yijun WANG, Zilong TANG, Guoliang PAN. Investigation of capacity fading in vanadium flow battery electrolytes and recovery via oxalic acid [J]. Energy Storage Science and Technology, 2025, 14(3): 1177-1186. |
[12] | Shuaijing JI, Junwei WANG, Baoshuai DU, Li XU, Ping LOU, Minyuan GUAN, Shun TAN, Shijie CHENG, Yuancheng CAO. Improvement paths for the stability and safety of LiFe x Mn1–x PO4 (0 < x < 1) batteries: From failure mechanisms to comprehensive optimization strategies [J]. Energy Storage Science and Technology, 2025, 14(3): 965-983. |
[13] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[14] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[15] | Nan LI, Jing MA, Tingxiu HUANG, Yixing SHEN, Min SHEN, Yiyi JIANG, Tao HONG, Guoqiang MA, Zifeng MA. Research progress on nitrile compounds in high potential electrolytes [J]. Energy Storage Science and Technology, 2025, 14(3): 997-1009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||