Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1585-1595.doi: 10.19799/j.cnki.2095-4239.2024.0964
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jiangwei SHEN1,2(), Yixin SHE1, Xing SHU2, Yonggang LIU3, Fuxing WEI1, Xuelei XIA1, Zheng CHEN1(
)
Received:
2024-10-14
Revised:
2024-11-15
Online:
2025-04-28
Published:
2025-05-20
Contact:
Zheng CHEN
E-mail:shenjiangwei6@kust.edu.cn;chen@kust.edu.cn
CLC Number:
Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network[J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595.
Table 3
Error statistics for each data segment"
起点电压 /V | 窗口长度 | |||||
---|---|---|---|---|---|---|
50 | 75 | 100 | ||||
R2 | MAE/% | R2 | MAE/% | R2 | MAE/% | |
2.782 | 0.3642 | 4.56 | 0.5575 | 2.75 | 0.8719 | 1.44 |
3.036 | 0.8778 | 1.45 | 0.8492 | 1.59 | 0.8453 | 1.68 |
3.268 | 0.8017 | 1.79 | 0.9120 | 1.20 | 0.8805 | 1.43 |
3.422 | 0.8855 | 1.36 | 0.8554 | 1.59 | 0.8608 | 1.55 |
3.474 | 0.7945 | 1.93 | 0.7149 | 2.32 | 0.7671 | 2.07 |
3.500 | 0.7899 | 1.91 | 0.7332 | 2.20 | 0.8783 | 1.40 |
3.523 | 0.7917 | 1.93 | 0.8255 | 1.64 | 0.9611 | 0.84 |
3.553 | 0.8608 | 1.52 | 0.9615 | 0.80 | 0.9698 | 0.79 |
3.594 | 0.9211 | 1.29 | 0.9694 | 0.84 | 0.9752 | 0.73 |
3.392 | 0.9557 | 1.02 | 0.9787 | 0.69 | 0.9697 | 0.82 |
3.409 | 0.9556 | 1.02 | 0.9688 | 0.84 | 0.9727 | 0.77 |
3.422 | 0.9587 | 0.91 | 0.9640 | 0.84 | 0.9635 | 0.82 |
3.434 | 0.9023 | 1.38 | 0.9207 | 1.19 | 0.8834 | 1.33 |
平均误差 | 0.8495 | 1.71 | 0.8585 | 1.39 | 0.8954 | 1.17 |
覆盖率/% | 61.1 | 77.7 | 88.9 |
Table 5
Error statistics for each segment of B16 and B18"
电池16起点电压 | R2 | MAE/% | 电池18起点电压 | R2 | MAE/% |
---|---|---|---|---|---|
2.825 | 0.8975 | 1.18 | 2.736 | 0.8572 | 1.00 |
3.062 | 0.9082 | 1.06 | 2.984 | 0.7186 | 1.22 |
3.306 | 0.9253 | 0.98 | 3.227 | 0.9705 | 0.57 |
3.481 | 0.9105 | 1.07 | 3.432 | 0.9708 | 0.57 |
3.535 | 0.8915 | 1.07 | 3.504 | 0.9748 | 0.54 |
3.468 | 0.9619 | 0.70 | 3.465 | 0.9741 | 0.52 |
3.466 | 0.9364 | 0.80 | 3.471 | 0.8702 | 0.87 |
3.482 | 0.9890 | 0.36 | 3.487 | 0.9813 | 0.39 |
3.503 | 0.9937 | 0.28 | 3.504 | 0.9795 | 0.45 |
3.533 | 0.9905 | 0.34 | 3.535 | 0.9839 | 0.42 |
3.583 | 0.9879 | 0.35 | 3.373 | 0.8924 | 0.95 |
3.417 | 0.9011 | 0.81 | |||
3.431 | 0.9256 | 0.81 | |||
平均误差 | 0.9448 | 0.74 | 平均误差 | 0.9231 | 0.70 |
覆盖率/% | 87.5 | 88.9 |
1 | HE Y, BAI W Y, WANG L L, et al. SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction[J]. Journal of Energy Storage, 2024, 83: 110678. DOI: 10.1016/j.est.2024.110678. |
2 | 朱振威, 苗嘉伟, 祝夏雨, 等. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. DOI: 10.19799/j.cnki.2095-4239.2024.0713. |
ZHU Z W, MIAO J W, ZHU X Y, et al. Research progress in lithium-ion battery remaining useful life prediction based on machine learning[J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. DOI: 10.19799/j.cnki.2095-4239.2024.0713. | |
3 | 李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210. |
LI Y S, KAN H D, GUO Z N, et al. Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210. | |
4 | 陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387. |
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239. 2023.0387. | |
5 | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346. |
6 | 申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063. DOI: 10.19595/j.cnki.1000-6753.tces.220216. |
SHEN J W, GAO C Z, SHU X, et al. Joint estimation of SOC and usable capacity of lithium-ion battery with wide temperature and full life based on migration model[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3052-3063. DOI: 10. 19595/j.cnki.1000-6753.tces.220216. | |
7 | XIONG W, MO Y M, YAN C. Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine[J]. IEEE Access, 2020, 9: 1870-1881. DOI: 10.1109/ACCESS.2020.3026552. |
8 | 梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166. |
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166. | |
9 | 顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. |
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085. | |
10 | XIONG R, LI Z Y, YANG R X, et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy, 2022, 324: 119762. DOI: 10.1016/j.apenergy.2022.119762. |
11 | ZHAO Y, WANG Z P, SHEN Z M, et al. Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(17): e2017318118. DOI: 10.1073/pnas.2017318118. |
12 | DENG Z W, HU X S, XIE Y, et al. Battery health evaluation using a short random segment of constant current charging[J]. iScience, 2022, 25(5): 104260. DOI: 10.1016/j.isci.2022.104260. |
13 | ZHANG C H, KANG Y Z, DUAN B, et al. An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9121-9132. DOI: 10.1109/TIE.2021.3111585. |
14 | DENG Z W, LIN X K, CAI J W, et al. Battery health estimation with degradation pattern recognition and transfer learning[J]. Journal of Power Sources, 2022, 525: 231027. DOI: 10.1016/j.jpowsour.2022.231027. |
15 | LIU K L, TANG X P, TEODORESCU R, et al. Future ageing trajectory prediction for lithium-ion battery considering the knee point effect[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1282-1291. DOI: 10.1109/TEC.2021.3130600. |
16 | WEN S, LIN N, HUANG S X, et al. Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model[J]. Energy, 2023, 284: 129246. DOI: 10.1016/j.energy.2023.129246. |
17 | RUMPF K, NAUMANN M, JOSSEN A. Experimental investigation of parametric cell-to-cell variation and correlation based on 1100 commercial lithium-ion cells[J]. Journal of Energy Storage, 2017, 14: 224-243. DOI: 10.1016/j.est.2017.09.010. |
18 | 林点, 潘理, 易平. 面向图像识别的卷积神经网络鲁棒性研究进展[J]. 网络与信息安全学报, 2022, 8(3): 111-122. DOI: 10.11959/j.issn.2096-109x.2022037. |
LIN D, PAN L, YI P. Research on the robustness of convolutional neural networks in image recognition[J]. Chinese Journal of Network and Information Security, 2022, 8(3): 111-122. DOI: 10.11959/j.issn.2096-109x.2022037. | |
19 | ZHOU Z Y, LIU Y G, YOU M X, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100008. DOI: 10.1016/j.geits.2022.100008. |
20 | CHOI Y, RYU S, PARK K, et al. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access, 2019, 7: 75143-75152. DOI: 10.1109/ACCESS.2019.2920932. |
21 | IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning, 2015: 448-456. |
22 | WANG Y Y, LI Y B, SONG Y, et al. The influence of the activation function in a convolution neural network model of facial expression recognition[J]. Applied Sciences, 2020, 10(5): 1897. DOI: 10.3390/app10051897. |
23 | DUAN Y Z, TIAN J P, LU J H, et al. Deep neural network battery impedance spectra prediction by only using constant-current curve[J]. Energy Storage Materials, 2021, 41: 24-31. DOI: 10.1016/j.ensm.2021.05.047. |
24 | KINGMA D P, BA J, HAMMAD M M. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980v9. |
25 | XUE J K, SHEN B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6. |
26 | WANG Q, YE M, WEI M, et al. Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios[J]. Energy, 2023, 263: 125718. DOI: 10.1016/j.energy.2022.125718. |
27 | 李晓东. Python人工智能[M]. 北京: 电子工业出版社, 2021. |
LI X D. Python artificial intelligence[M]. Beijing: Publishing House of Electronics Industry, 2021. | |
28 | LI Y H, LI K, LIU X, et al. Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning[J]. Applied Energy, 2021, 285: 116410. DOI: 10.1016/j.apenergy.2020.116410. |
[1] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[2] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[3] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[4] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[5] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[6] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[7] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[8] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[9] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[10] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[11] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[12] | Ziheng ZHANG, Mengmeng GENG, Maosong FAN, Yuhong JIN, Jingbing LIU, Kai YANG, Hao WANG. SOH estimation based on distribution of relaxation times for the retired power lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(2): 770-778. |
[13] | Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage [J]. Energy Storage Science and Technology, 2025, 14(2): 799-811. |
[14] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[15] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||