Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 252-269.doi: 10.19799/j.cnki.2095-4239.2023.0910
• Research Highlight • Previous Articles Next Articles
Xinxin ZHANG(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-12-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Xuejie HUANG
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
CLC Number:
Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2023 to Nov. 30, 2023)[J]. Energy Storage Science and Technology, 2024, 13(1): 252-269.
51 | HUANG W Z, LIU Z Y, XU P, et al. High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites[J]. Journal of Materials Chemistry A, 2023, 11(24): 12713-12718. |
52 | CAO D X, JI T T, WEI Z X, et al. Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure[J]. Nano Letters, 2023, 23(20): 9392-9398. |
53 | OH J, CHOI S H, KIM J Y, et al. Anode-less all-solid-state batteries operating at room temperature and low pressure[J]. Advanced Energy Materials, 2023, 13(38): doi: 10.1002/aenm. 202301508. |
54 | FALLARINO L, CHISHTI U N, PESCE A, et al. Towards lithium-free solid-state batteries with nanoscale Ag/Cu sputtered bilayer electrodes[J]. Chemical Communications, 2023, 59(82): 12346-12349. |
55 | SCHLAUTMANN E, WEIß A, MAUS O, et al. Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites[J]. Advanced Energy Materials, 2023, 13(41): doi: 10.1002/aenm.202302309. |
56 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced Materials, 2023, 35(32): doi: 10.1002/adma.202301631. |
57 | KIM H, CHOI H N, HWANG J Y, et al. Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(10): 3971-3979. |
58 | HOANG H A, KIM D. High energy and sustainable solid-state lithium-sulfur battery enabled by the force-bearing cathode and multifunctional double-layer hybrid solid electrolyte[J]. Chemical Engineering Journal, 2023, 474: 145982. |
59 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14: 6404. |
60 | LIU T J, KUM L W, SINGH D K, et al. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries[J]. ACS Omega, 2023, 8(13): 12411-12417. |
61 | BATZER M, GUNDLACH D, MICHALOWSKI P, et al. Scalable production of separator and cathode suspensions via extrusion for sulfidic solid-state batteries[J]. ChemElectroChem, 2023, 10(23): doi: 10.1002/celc.202300452. |
62 | WU C C, HO Y C, CHUNG S H. A low-self-discharge high-loading polysulfide cathode design for lithium-sulfur cells[J]. Journal of Materials Chemistry A, 2023, 11(45): 24651-24660. |
63 | DONG T W, ZHANG J D, AI Z Y, et al. Built-in ultrafine CoS2 catalysis in confined ordered micro-mesoporous carbon nanoreactors for high-performance Li-S batteries[J]. Journal of Power Sources, 2023, 573: 233136. |
64 | KIM H, MIN K J, BANG S, et al. Long-lasting, reinforced electrical networking in a high-loading Li2S cathode for high-performance lithium-sulfur batteries[J]. Carbon Energy, 2023, 5(8): doi: 10.1002/cey2.308. |
65 | LI H, CHUAI M Y, XIAO X, et al. Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics[J]. Journal of the American Chemical Society, 2023, 145(41): 22516-22526. |
66 | ZUO X T, ZHEN M M, LIU D P, et al. A multifunctional catalytic interlayer for propelling solid-solid conversion kinetics of Li2S2 to Li2S in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(15): doi: 10.1002/adfm.202214206. |
67 | LIU Y T, XU L H, YU Y Q, et al. Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction[J]. Joule, 2023, 7(9): 2074-2091. |
68 | MA T, NI Y X, LI D T, et al. Reversible solid-solid conversion of sulfurized polyacrylonitrile cathodes in lithium-sulfur batteries by weakly solvating ether electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(43): doi: 10.1002/anie.202310761. |
69 | GAO R H, ZHANG M T, HAN Z Y, et al. Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma. 202303610. |
70 | CHENG Q A, CHEN Z X, LI X Y, et al. Deciphering the degradation mechanism of high-rate and high-energy-density lithium-sulfur pouch cells[J]. Advanced Energy Materials, 2023, 13(42): doi: 10.1002/aenm.202301770. |
71 | NAGLER F, FLEGLER A, GIFFIN G A. Impact of electrode architecture on electrochemical performance of aqueous processed, high-loaded lithium-ion battery cathodes[J]. Batteries & Supercaps, 2023, 6(7): doi: 10.1002/batt.202300063. |
72 | CHAUHAN A, NIRSCHL H. Numerical investigation of conductivity additive dispersion in high-power and high-energy NMC-based lithium-ion battery cathodes: Application-based guidelines[J]. Energy Technology, 2023, 11(8): doi: 10.1002/ente.202300281. |
73 | PACE G T, LE M L, CLÉMENT R J, et al. A coacervate-based mixed-conducting binder for high-power, high-energy batteries[J]. ACS Energy Letters, 2023, 8(6): 2781-2788. |
74 | KIM J H, LEE K M, KIM J W, et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes[J]. Nature Communications, 2023, 14: 5721. |
75 | YONAGA A, KAWAUCHI S, MORI Y, et al. Effects of dry powder mixing on electrochemical performance of lithium-ion battery electrode using solvent-free dry forming process[J]. Journal of Power Sources, 2023, 581: 233466. |
76 | JORALEECHANCHAI N, SANGSANIT T, HOMLAMAI K, et al. Insight into the effect of thick graphite electrodes towards high-performance cylindrical Ni-rich NCA90 Li-ion batteries[J]. Journal of Energy Chemistry, 2023, 87: 322-333. |
77 | WIEGMANN E, CAVERS H, DIENER A, et al. Semi-dry extrusion-based processing for graphite anodes: Morphological insights and electrochemical performance[J]. Energy Technology, 2023, 11(9): doi: 10.1002/ente.202300341. |
78 | CHANG Q A, FU X L, GAO J C, et al. Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage[J]. Advanced Materials, 2023, 35(47): doi: 10.1002/adma.202305317. |
79 | ZHENG G L, YAN T, HONG Y F, et al. A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries[J]. Nature Communications, 2023, 14: 2268. |
80 | CHIEN Y C, LIU H D, MENON A S, et al. Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method[J]. Nature Communications, 2023, 14: 2289. |
81 | ZHAO H B, DENG H D, COHEN A E, et al. Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel[J]. Nature, 2023, 621(7978): 289-294. |
82 | PANDYA R, VALZANIA L, DORCHIES F, et al. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries[J]. Nature Nanotechnology, 2023, 18(10): 1185-1194. |
83 | BERG C, MORASCH R, GRAF M, et al. Comparison of silicon and graphite anodes: Temperature-dependence of impedance characteristics and rate performance[J]. Journal of the Electrochemical Society, 2023, 170(3): 030534. |
84 | TAO M M, CHEN X X, LIN H X, et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries[J]. ACS Nano, 2023, 17(23): 24104-24114. |
85 | LIU F, LU W Q, HUANG J Q, et al. Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs[J]. Nature Communications, 2023, 14: 7350. |
86 | CHENG C X, ZHOU Y D, XU Y B, et al. Dynamic molecular investigation of the solid-electrolyte interphase of an anode-free lithium metal battery using in situ liquid SIMS and cryo-TEM[J]. Nano Letters, 2023, 23(18): 8385-8391. |
1 | JOBST N M, PAUL N, BERAN P, et al. Dynamic structure evolution of extensively delithiated high voltage spinel Li1+ xNi0.5Mn1.5O4 x<1.5[J]. Journal of the American Chemical Society, 2023, 145(8): 4450-4461. |
2 | MARTENS I, VOSTROV N, MIROLO M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel[J]. Nature Communications, 2023, 14: 6975. |
3 | GAO C, LIU H Y, ZHANG J, et al. Simplified crystal grain boundary engineering of solid electrolyte-infused LiNi0.5Mn1.5O4 cathodes for high cycling stability lithium-ion batteries[J]. Journal of Power Sources, 2023, 582: 233434. |
4 | CHENG Y, ZHANG X Z, LENG Q Y, et al. Boosting electrochemical performance of Co-free Ni-rich cathodes by combination of Al and high-valence elements[J]. Chemical Engineering Journal, 2023, 474: 145869. |
5 | WANG Y Y, LIANG Z M, LIU Z C, et al. Synergy of epitaxial layer and bulk doping enables structural rigidity of cobalt-free ultrahigh-nickel oxide cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202308152. |
6 | TAN X H, CHEN Z F, LIU T C, et al. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes[J]. Advanced Materials, 2023, 35(32): e2301096. |
7 | LUO D, ZHU H, XIA Y, et al. A Li-rich layered oxide cathode with negligible voltage decay[J]. Nature Energy, 2023, 8(10): 1078-1087. |
8 | HOU Y K, LI C X, REN D S, et al. Enabling electrochemical-mechanical robustness of ultra-high Ni cathode via self-supported primary-grain-alignment strategy[J]. Advanced Science, 2023: doi: 10.1002/advs.202306347. |
9 | SONG S H, KIM H S, KIM K S, et al. Toward a nanoscale-defect-free Ni-rich layered oxide cathode through regulated pore evolution for long-lifespan Li rechargeable batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306654. |
10 | LI B, ZHUO Z Q, ZHANG L T, et al. Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes[J]. Nature Materials, 2023, 22(11): 1370-1379. |
11 | ZHAO H S, LIANG K, WANG S J, et al. A stress self-adaptive silicon/carbon "ordered structures" to suppress the electro-chemo-mechanical failure: Piezo-electrochemistry and piezo-ionic dynamics[J]. Advanced Science, 2023, 10(29): doi: 10.1002/advs.202303696. |
12 | YAO K, LI N, LI N, et al. Tin metal improves the lithiation kinetics of high-capacity silicon anodes[J]. Chemistry of Materials, 2023, 35(6): 2281-2288. |
87 | GARRICK T R, MIAO Y, MACCIOMEI E, et al. Quantifying aging-induced irreversible volume change of porous electrodes[J]. Journal of the Electrochemical Society, 2023, 170(10): 100513. |
88 | WANG X Q, SONG Y Z, CUI H, et al. Insight into the electrochemical behaviors of NCM811|SiO-Gr pouch battery through thickness variation[J]. Energy & Environmental Materials, 2023, 6(5): doi: 10.1002/eem2.12401. |
89 | HAWKINS B E, ASARE H, CHEN B, et al. Elucidating failure mechanisms in Li-ion batteries operating at 100 ℃[J]. Journal of the Electrochemical Society, 2023, 170(10): 100522. |
90 | STAVOLA A M, SUN X, GUIDA D P, et al. Lithiation gradients and tortuosity factors in thick NMC111-argyrodite solid-state cathodes[J]. ACS Energy Letters, 2023, 8(2): 1273-1280. |
91 | MALAKI M, HAUST J, BEAUPAIN J P, et al. Probing the interface evolution in co-sintered all-phosphate cathode-solid electrolyte composites[J]. Advanced Materials Interfaces, 2023, 10(35): doi: 10.1002/admi.202300513. |
92 | AKTEKIN B, RIEGGER L M, OTTO S K, et al. SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis[J]. Nature Communications, 2023, 14: 6946. |
93 | LEWIS J A, SANDOVAL S E, LIU Y, et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion[J]. Advanced Energy Materials, 2023, 13(12): doi: 10.1002/aenm.202204186. |
94 | LANDRY A K, BAYZOU R, BENAYAD A, et al. Unveiling the origins of high ionic conductivity in lithium phosphorus oxynitride amorphous electrolytes[J]. Chemistry of Materials, 2023, 35(21): 9313-9324. |
95 | ORUE MENDIZABAL A, CHEDDADI M, TRON A, et al. Understanding interfaces at the positive and negative electrodes on sulfide-based solid-state batteries[J]. ACS Applied Energy Materials, 2023, 6(21): 11030-11042. |
96 | SHIN H J, KIM J T, KIM A Y, et al. New consideration of degradation accelerating of all-solid-state batteries under a low-pressure condition [J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm.202301220. |
97 | MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. |
98 | MULPURI S K, SAH B, KUMAR P. Unraveling capacity fading in lithium-ion batteries using advanced cyclic tests: A real-world approach[J]. iScience, 2023, 26(10): 107770. |
13 | WANG F, WANG Y C, LIU Z D, et al. Carbon-binder design for robust electrode-electrolyte interfaces to enable high-performance microsized-silicon anode for batteries[J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm.202301456. |
14 | CHEN Y X, CHENG Y W, HUANG J H, et al. Waterbed inspired stress relaxation strategies of patterned silicon anodes for fast-charging and longevity of lithium microbatteries[J]. Journal of Materials Chemistry A, 2023, 11(39): 21211-21221. |
15 | KO S, HAN X A, SHIMADA T, et al. Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode[J]. Nature Sustainability, 2023, 6(12): 1705-1714. |
16 | YU S C, WANG S, MIAO Q S, et al. Composite lithium metal structure to mitigate pulverization and enable long-life batteries[J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm. 202302400. |
17 | ZHU X X, CHENG H W, LYU S B, et al. High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300129. |
18 | LIU Y H, LI Y F, DU Z Z, et al. Integrated gradient Cu current collector enables bottom-up Li growth for Li metal anodes: Role of interfacial structure[J]. Advanced Science, 2023, 10(23): doi: 10.1002/advs.202301288. |
19 | LI W H, QUIRK J A, LI M S, et al. Precise tailoring of lithium-ion transport for ultra-long-cycling dendrite-free all-solid-state lithium metal batteries[J]. Advanced Materials, 2023: e2302647. |
20 | LI W H, LI M S, CHIEN P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Science Advances, 2023, 9(42): eadh4626. |
21 | LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(48): doi: 10.1002/anie.202306433. |
22 | LIU H, ZHU Q S, LIANG Y H, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries[J]. Chemical Engineering Journal, 2023, 462: 142183. |
23 | SANG J W, PAN K C, TANG B, et al. One stone, three birds: An air and interface stable argyrodite solid electrolyte with multifunctional nanoshells[J]. Advanced Science, 2023, 10(32): e2304117. |
24 | LU P S, XIA Y, SUN G C, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+ xMxAs1- xS5I (M=Si, Sn) sulfide solid electrolytes[J]. Nature Communications, 2023, 14: 4077. |
25 | GAO C W, ZHANG J H, HE C M, et al. Unveiling the growth mechanism of the interphase between lithium metal and Li2S-P2S5-B2S3 solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(22): doi: 10.1002/aenm.202204386. |
26 | GAUTAM A, AL-KUTUBI H, FAMPRIKIS T, et al. Exploring the relationship between halide substitution, structural disorder, and lithium distribution in lithium argyrodites (Li6- xPS5- xBr1+ x)[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2023, 35(19): 8081-8091. |
27 | GE Z Y, CHEN N S, WANG R, et al. Constructing dendrite suppressing mixed sulfide solid electrolyte for high-rate lithium metal batteries[J]. Chemical Engineering Journal, 2023, 467: 143409. |
28 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2023: e2307768. |
29 | YANG J Y, CAO Z, CHEN Y W, et al. Dry-processable polymer electrolytes for solid manufactured batteries[J]. ACS Nano, 2023, 17(20): 19903-19913. |
30 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
31 | ACCARDO G, ORUE A, CHATZOGIANNAKIS D, et al. Fast and low-temperature densification of highly conductive Li7La3Zr2O12 ceramic electrolytes for solid-state batteries[J]. Journal of Power Sources, 2023, 585: 233632. |
32 | KIM S, LEE H, PARK J, et al. Lithium-preserved sintering method for perovskite-based solid electrolyte thin films via flash light sintering for all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(40): 21586-21594. |
33 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023, 33(36): doi: 10.1002/adfm.202302411. |
34 | WANG Z S, ZHU C L, LIU J D, et al. Catalytically induced robust inorganic-rich cathode electrolyte interphase for 4.5V Li||NCM622 batteries[J]. Advanced Functional Materials, 2023, 33(19): doi: 10.1002/adfm.202212150. |
35 | KUBOT M, BALKE L, SCHOLZ J, et al. High-voltage instability of vinylene carbonate (VC): Impact of formed poly-VC on interphases and toxicity[J]. Advanced Science, 2023: e2305282. |
36 | TIAN M Y, JIN Z, SONG Z Y, et al. Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(39): 21600-21611. |
37 | CHU F L, LIU J M, GUAN Z Q, et al. A non-expendable leveler as electrolyte additive enabling homogenous lithium deposition[J]. Advanced Materials, 2023, 35(49): doi: 10.1002/adma.202305470. |
38 | ZHANG G Z, CHANG J, WANG L G, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 1081. |
39 | CASTILLO J, SORIA-FERNÁNDEZ A, RODRIGUEZ-PEÑA S, et al. Graphene-based sulfur cathodes and dual salt-based sparingly solvating electrolytes: A perfect marriage for high performing, safe, and long cycle life lithium-sulfur prototype batteries[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202302378. |
40 | LI Z, RAO H, ATWI R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 868. |
41 | YANG Y Z, YANG Z, LI Z L, et al. Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode[J]. Advanced Energy Materials, 2023, 13(41): doi: 10.1002/aenm.202302068. |
42 | LI S Y, LI J N, WANG P, et al. Interface engineering regulation by improving self-decomposition of lithium salt-type additive using ultrasound[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202307180. |
43 | JIA H, KIM J M, GAO P Y, et al. A systematic study on the effects of solvating solvents and additives in localized high-concentration electrolytes over electrochemical performance of lithium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(17): doi: 10.1002/anie.202218005. |
44 | BONG W S K, SHIOTA A, MIWA T, et al. Effect of thickness and uniformity of LiNbO3-coated layer on LiNi0.5Co0.2Mn0.3O2 cathode material on enhancement of cycle performance of full-cell sulfide-based all-solid-state batteries[J]. Journal of Power Sources, 2023, 577: 233259. |
45 | WANG Y, WU D X, CHEN P, et al. Dual‐function modifications for high‐stability Li‐rich cathode toward sulfide all‐solid‐state batteries[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm. 202309822. |
46 | HUANG Y Y, ZHOU L D, LI C, et al. Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries[J]. ACS Energy Letters, 2023, 8(11): 4949-4956. |
47 | DUAN H, WANG C H, YU R Z, et al. In situ constructed 3D lithium anodes for long-cycling all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300815. |
48 | WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739-744. |
49 | ZHAO G Q, LUO C W, WU B, et al. Low-temperature in situ lithiation construction of a lithiophilic particle-selective interlayer for solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(43): 50508-50521. |
50 | ZHANG B Y, WU M S, SUN B Z, et al. Bilayer halide electrolyte design enabling excellent interface stability between a Li-metal anode and a halide solid electrolyte[J]. The Journal of Physical Chemistry C, 2023, 127(43): 21440-21448. |
99 | GU Z C, SONG D X, LUO S T, et al. Insights into the anode‐initiated and grain boundary‐initiated mechanisms for dendrite formation in all‐solid‐state lithium metal batteries[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202302945. |
100 | GUPTA S, YANG X C, CEDER G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture[J]. Nature Communications, 2023, 14: 6884. |
[1] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[2] | Yi CHEN, Qi QEN, Long ZHAO, Zikun CHEN, Anning WANG. Analysis of China's patent landscape for new energy storage technologies [J]. Energy Storage Science and Technology, 2024, 13(6): 2089-2098. |
[3] | Haiou SHI. Fault analysis and application of lithium battery based on deep learning [J]. Energy Storage Science and Technology, 2024, 13(6): 2054-2056. |
[4] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[5] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[6] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[7] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
[8] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[9] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[10] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[11] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[12] | Zhaokai YUAN, Qiuhua FAN, Dongqing WANG, Tianmin SUN. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm [J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. |
[13] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[14] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[15] | Mingxun JIA, Tong WU, Daotong YANG, Xiaoxi QIN, Jinghai LIU, Limei DUAN. Electrolyte multifunctional additives of lithium-sulfur battery: Mechanism of action and advanced characterization [J]. Energy Storage Science and Technology, 2024, 13(1): 36-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||