Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1658-1666.doi: 10.19799/j.cnki.2095-4239.2023.0812
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Ziwei TANG(), Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU()
Received:
2023-11-13
Revised:
2023-12-05
Online:
2024-05-28
Published:
2024-05-28
Contact:
Huiling DU
E-mail:1715695867@qq.com;hldu@xust.edu.cn
CLC Number:
Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer[J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666.
11 | 邢子轩, 张凡, 武明虎, 等. 基于WD-GRU的锂离子电池剩余寿命预测[J]. 电源技术, 2022, 46(8): 867-871. |
XING Z X, ZHANG F, WU M H, et al. Remaining life prediction of lithium ion batteries based on WD-GRU[J]. Chinese Journal of Power Sources, 2022, 46(8): 867-871. | |
12 | 陈欣, 李云伍, 梁新成, 等. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
CHEN X, LI Y W, LIANG X C, et al. Battery health state estimation of combined Transformer-GRU based on modal decomposition[J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. | |
13 | CHEN D Q, HONG W C, ZHOU X Z. Transformer network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Access, 2022, 10: 19621-19628. |
14 | ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting? [EB/OL]. 2022: arXiv: 2205.13504. http://arxiv.org/abs/2205.13504 |
15 | SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): 018212. |
16 | ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[J]. ArXiv e-Prints, 2020: arXiv: . |
17 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. 2017: arXiv: 1706.03762. http://arxiv.org/abs/1706.03762 |
18 | 余宇峰, 朱跃龙, 万定生, 等. 基于滑动窗口预测的水文时间序列异常检测[J]. 计算机应用, 2014, 34(8): 2217-2220, 2226. |
YU Y F, ZHU Y L, WAN D S, et al. Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications, 2014, 34(8): 2217-2220, 2226. | |
19 | WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2020, 4(1): doi: 10.36001/IJPHM.2013.V4I1.1437. |
20 | SAHA B, GOEBEL K. Battery data set[R]. NASA Ames Prognostics Data Analysis, 2007. |
1 | LIU X Q, ZHU S L, LIANG Y Q, et al. 3D N-doped mesoporous carbon/SnO2 with polypyrrole coating layer as high-performance anode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2022, 892: 162083. |
2 | 刘巧云, 祁秀秀, 郝卫强. 锂电池用正极材料钴酸锂改性研究进展[J]. 电源技术, 2022, 46(12): 1357-1359. |
LIU Q Y, QI X X, HAO W Q. Research progress on modification of lithium cobalt oxide as cathode material for lithium battery[J]. Chinese Journal of Power Sources, 2022, 46(12): 1357-1359. | |
3 | 杨欢, 乔志军. 纳米SnO2锂电负极材料的研究进展[J]. 云南化工, 2020, 47(3): 5-6. |
YANG H, QIAO Z J. Research progress of nano SnO2 lithium battery anode materials[J]. Yunnan Chemical Technology, 2020, 47(3): 5-6. | |
4 | 张雨, 吕瑞华, 聂丽宇, 等. 浅谈基于BP神经网络对实验室锂电池循环性能预测研究[J]. 江西化工, 2020(3): 93-95. |
ZHANG Y, LYU R H, NIE L Y, et al. Study on prediction of lithium battery cycle performance based on BP neural network[J]. Jiangxi Chemical Industry, 2020(3): 93-95. | |
5 | 黄奂奇. 基于电化学热耦合模型的锂离子电池老化状态估计[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
HUANG H Q. Aging state estimation of lithium ion battery based on electrochemical thermal coupling model[D].Harbin: Harbin Institute of Technology, 2021. | |
6 | 黄泽波. 基于电化学模型估算锂电池SOC的方法研究[J]. 电源世界, 2016(7): 25-27. |
HUANG Z B. Lithium battery SOC estimation method study based on electrochemical model[J]. The World of Power Supply, 2016(7): 25-27. | |
7 | 刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. |
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. | |
8 | 王超, 范兴明, 张鑫, 等. 基于IRVM的锂电池荷电状态评估方法与仿真验证[J]. 电子技术应用, 2018, 44(12): 127-130, 134. |
WANG C, FAN X M, ZHANG X, et al. An evaluation method of Li-ion batteries state of charge based on IRVM and verified by simulation[J]. Application of Electronic Technique, 2018, 44(12): 127-130, 134. | |
9 | 吴章玉, 朱成杰, 王鸣雁. 基于RNN的锂电池健康预测[J]. 绿色科技, 2021, 23(18): 201-203. |
WU Z Y, ZHU C J, WANG M Y. Health prediction of lithium battery based on RNN[J]. Journal of Green Science and Technology, 2021, 23(18): 201-203. | |
10 | GONG Y D, ZHANG X Y, GAO D Z, et al. State-of-health estimation of lithium-ion batteries based on improved long short-term memory algorithm[J]. Journal of Energy Storage, 2022, 53(9): 1-13. |
[1] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[2] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[3] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[4] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[5] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[6] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[7] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[8] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[9] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[10] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[11] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[12] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
[13] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[14] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[15] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||