Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1667-1676.doi: 10.19799/j.cnki.2095-4239.2023.0869
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Gaoqi LIAN1(), Min YE1(
), Qiao WANG1,2, Yan LI1, Yuchuan MA1, Yiding SUN1, Penghui DU1
Received:
2023-12-01
Revised:
2023-12-18
Online:
2024-05-28
Published:
2024-05-28
Contact:
Min YE
E-mail:gaoqi@chd.edu.cn;mingye@chd.edu.cn
CLC Number:
Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter[J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676.
Table 3
SOC estimation error evaluation results and comparative analysis under six operating conditions in rapidly varying temperature environments"
工况 | RMSE/% | MAE/% | ||||||
---|---|---|---|---|---|---|---|---|
方案1 | 方案2 | 方案3 | 方案4 | 方案1 | 方案2 | 方案3 | 方案4 | |
FUDS | 2.37 | 2.89 | 0.41 | 0.74 | 1.83 | 2.14 | 0.04 | 0.09 |
UDDS | 2.9 | 2.57 | 0.33 | 0.35 | 2.48 | 2.99 | 0.12 | 0.16 |
混合1 | 4.87 | 3.76 | 0.9 | 1.29 | 3.93 | 2.81 | 0.28 | 0.43 |
BJDST | 2.47 | 2.77 | 0.55 | 1.14 | 1.88 | 2.24 | 0.38 | 0.43 |
US03 | 1.65 | 1.93 | 0.18 | 0.28 | 1.37 | 1.48 | 0.04 | 0.2 |
混合2 | 2.32 | 2.69 | 0.28 | 0.32 | 1.62 | 1.99 | 0.2 | 0.25 |
1 | WEI Z B, HU J, LI Y, et al. Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries[J]. Applied Energy, 2022, 307: 118246. |
2 | WANG Q, YE M, CAI X, et al. Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications[J]. Applied Energy, 2023, 350: 121747. |
3 | MA Y C, WANG Q, YE M, et al. Robust control for the hybrid energy system of an electric loader[J]. Machines, 2023, 11(4): 454. |
4 | BAI H Y, SONG Z Y. Lithium-ion battery, sodium-ion battery, or redox-flow battery: A comprehensive comparison in renewable energy systems[J]. Journal of Power Sources, 2023, 580: 233426. |
5 | WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. |
6 | 申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063. |
SHEN J W, GAO C Z, SHU X, et al. Joint estimation of SOC and usable capacity of lithium-ion battery with wide temperature and full life based on migration model[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3052-3063. | |
7 | 谢翌, 江迪生, 张扬军, 等. 新能源汽车锂离子电池组SOC-SOP联合估计算法[J]. 汽车安全与节能学报, 2022, 13(3): 580-589. |
XIE Y, JIANG D S, ZHANG Y J, et al. Joint estimation algorithm of SOC-SOP for lithium-ion battery pack in new energy vehicles[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 580-589. | |
8 | 黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344. |
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344. | |
9 | 付诗意, 吕桃林, 闵凡奇, 等. 电动汽车用锂离子电池SOC估算方法综述[J]. 储能科学与技术, 2021, 10(3): 1127-1136. |
FU S Y, LYU T L, MIN F Q, et al. Review of estimation methods on SOC of lithium-ion batteries in electric vehicles[J]. Energy Storage Science and Technology, 2021, 10(3): 1127-1136. | |
10 | WEI Z B, DONG G Z, ZHANG X N, et al. Noise-immune model identification and state-of-charge estimation for lithium-ion battery using bilinear parameterization[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 312-323. |
11 | TANG R L, ZHANG S H, ZHANG S Y, et al. Model parameter identification for lithium-ion batteries using adaptive multi-context cooperatively co-evolutionary parallel differential evolution algorithm[J]. Journal of Energy Storage, 2023, 58: 106432. |
12 | LI W, XIE Y, LIU K L, et al. An enhanced thermal model with virtual resistance technique for pouch batteries at low temperature and high current rates[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 44-56. |
13 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. | |
14 | 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. |
PANG H, GUO L, WU L X, et al. An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2178-2189. | |
15 | LAI X, WANG S Y, HE L, et al. A hybrid state-of-charge estimation method based on credible increment for electric vehicle applications with large sensor and model errors[J]. Journal of Energy Storage, 2020, 27: 101106. |
16 | 申江卫, 周灿彪, 舒星, 等. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
SHEN J W, ZHOU C B, SHU X, et al. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment[J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. | |
17 | XIONG R, HUANG J T, DUAN Y Z, et al. Enhanced Lithium-ion battery model considering critical surface charge behavior[J]. Applied Energy, 2022, 314: 118915. |
18 | CUI Z H, KANG L, LI L W, et al. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF[J]. Energy, 2022, 259: 124933. |
19 | HE H W, ZHAO X Y, LI J W, et al. Voltage abnormality-based fault diagnosis for batteries in electric buses with a self-adapting update model[J]. Journal of Energy Storage, 2022, 53: 105074. |
20 | LIAN G Q, YE M, WANG Q, et al. Noise-immune state of charge estimation for lithium-ion batteries based on optimized dynamic model and improved adaptive unscented Kalman filter under wide. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Haifei SONG, Lehong WANG, Yidong YUAN, Tianting ZHAO, Jie CHEN. Battery sampling voltage filtering and estimation based on improved Kalman filter algorithm [J]. Energy Storage Science and Technology, 2025, 14(5): 2106-2113. |
[3] | Honghui WANG, Jiaxin LI, Deren CHU, Yanyi LI, Ting XU. Study on the electrochemical performance failure mechanisms and thermal safety of lithium iron phosphate battery during storage conditions [J]. Energy Storage Science and Technology, 2025, 14(5): 1797-1805. |
[4] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[5] | Zhen YAN, Qiang LIU, Huibin LI, Jun ZHANG, Yahui JIANG. Power optimization management method for photovoltaic microgrids based on the state of charge of hybrid energy storage systems [J]. Energy Storage Science and Technology, 2025, 14(5): 2067-2077. |
[6] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[7] | Tao WANG, Tian MAO, Baorong ZHOU, Wenmeng ZHAO, Hao HUA. Exploration of virtual synchronous machine control based on energy storage state of charge [J]. Energy Storage Science and Technology, 2025, 14(5): 2032-2034. |
[8] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[9] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[10] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[11] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[12] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[13] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[14] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[15] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||